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ABSTRACT 

The operational production of skillful long-range forecasts of Arctic sea ice 

has the potential to be very useful when integrated into the planning of Arctic 

operations by the U.S. Navy and other organizations.  We investigated the 

potential for predicting October sea ice concentration (SIC) in the Beaufort Sea at 

lead times of one to five months.  We used SIC data for 1979–2007 to 

statistically and dynamically analyze atmospheric and oceanic processes 

associated with variations of SIC in the Beaufort Sea.  We also conducted 

correlation analyses to identify climate system variables for use as predictors of 

SIC.  We developed linear regression models for predicting SIC based on 

multiple predictors.  We tested these models by generating hindcasts of October 

SIC for 1979–2007 based on several combinations of predictors.  We found two 

key predictors of October SIC in the Beaufort Sea at leads of one to five 

months—antecedent SIC in the Beaufort Sea and sea surface temperature (SST) 

in the Caribbean Sea in the preceding May-September period.  Both of these 

predictors showed a consistent and statistically significant relationship with 

October SIC at all lead times.  Both are also dynamically reasonable predictors, 

given the role of antecedent ice conditions, and of the Arctic Oscillation and 

North Atlantic Oscillation in influencing basin scale SSTs.  Our hindcast 

verification metrics show that a linear regression model based on these two 

predictors produces skillful forecasts of SIC at leads of one to five months.  

Based on these results, we issued a forecast on 01 June 2010 for SIC in the 

Beaufort Sea in October 2010.  We also identified and conducted multi-year, 

linear regression hindcasts using several other predictors (e.g., low level air 

temperature, low level winds, and upper ocean temperature) that proved useful 

at various lead times.  Our results indicate a significant potential for improving 

long range forecasts in support of Arctic operations by the U.S. Navy and other 

organizations.  
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I. INTRODUCTION 

A. BACKGROUND 

In May 2009, the Chief of Naval Operations (CNO) formally reviewed 

plans for operations in the Arctic region due to recently observed climate 

changes in the region.  This review led to the establishment of the Task Force 

Climate Change (TFCC).  The TFCC published the United States Navy Arctic 

Roadmap in October 2009 (TFCC 2009).  The Roadmap states that the sea ice 

decline in the Arctic may lead to increased resource development, research, and 

tourism, and could reshape the global transportation system.  Reducing the 

uncertainty in the projections of these changes will enable the Navy to make 

better-informed investment and policy decisions (TFCC 2009).   

The Roadmap describes a number of research, education, operational 

and other objectives.  The accomplishment of these objectives is intended to 

provide Navy decision makers with a better understanding of the current and 

predicted Arctic environment on temporal and spatial scales that would support 

the planning of naval tactics, operations, and strategies (TFCC 2009).  One of 

the major objectives of the Roadmap is to understand when significant access for 

Arctic shipping and other maritime activity is likely to develop.  The desired effect 

of this objective is to develop a better understanding of the changes and 

projections for the Arctic environment, specifically when the sea ice will recede 

and to what extent the sea ice recession would allow maritime access into the 

Arctic that would otherwise not be possible (TFCC 2009).   

Section 4.5 of the Roadmap, entitled environmental assessment and 

prediction, states that the Navy desires to understand the changes and 

projections for the Arctic environment, specifically when and to what extent ice 

will recede and allow increased maritime access to the Arctic (TFCC 2009).  The 

Roadmap states that one of the ways the Navy will achieve this goal is by 

initiating a capabilities based assessment (CBA) of the Navy’s Arctic observing, 
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mapping, and environmental prediction capabilities (TFCC 2009).  The CBA will 

evaluate the Navy’s capability and requirements to: (a) observe the physical 

environment in the Arctic region, to include hydrographic, atmospheric, 

oceanographic, and ice data; and (b) predict air-sea-ice conditions on different 

strategic time scales, including months to decades (TFCC 2009).  As shown in 

Figure 1, environmental assessment and prediction underpins the rest of the 

Arctic Roadmap focus areas (Titley 2009).  If the Navy does not have a full 

understanding of the Arctic climate system, then the other focus areas will not 

function to their full potential.  The purpose of our study is to develop skillful long-

range forecasts (LRFs) of sea ice in the Arctic.  This study was designed to help 

meet the objectives of the Arctic Roadmap by developing and testing methods for 

producing skillful LRFs of Arctic sea ice.  The overall goal of our study is to 

advance the Navy’s understanding of the physical environment and help improve 

long-range planning of Arctic operations. 
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Figure 1. Schematic diagram of the Navy’s plan for dealing with climate 
change in the Arctic.  The six focus areas are represented as pillars.  Climate 
assessment and prediction is the foundation of the other focus areas.  Our 
study is viewed as important for improving the navy’s ability to assess and 
predict Arctic sea ice.  Image from Titley (2009).   

 Climate change in the Arctic has been a widely researched topic among 

scientists.  Figure 2 shows a time series of Arctic sea ice extent in April from 

1979 to the present.  Arctic sea ice in April has decreased by approximately 2.6% 

per decade since 1979 (NSIDC 2010a).  These declines in April sea ice extent 

are similar to those for all the other months (not shown).  Climate models suggest 

that the Arctic Ocean could experience ice-free summers by the middle-to-end of 

the 21st century (Maslowski 2007).  This information is alarming and it is 

important for scientists to research what is causing these climatic changes in 

Arctic sea ice.   
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Figure 2. Arctic wide sea ice extent for April 1979–2010.  Note the 
approximate 2.6% per decade decline since 1979.  Image from NSIDC 
(2010a). 

Understanding Arctic sea ice variation in specific regions of interest within 

the Arctic is critical in developing a LRF of sea ice at lead times of several 

months.  While steps have been taken to understand what causes sea ice 

variation in the Arctic, operational forecasts of sea ice for specific regions within 

the Arctic at lead times of one month or greater are still not as reliable and 

operationally useful as is needed by Navy decision makers (cf. TFCC 2009).  In 

this study, we have focused on how state of the science data sets, and analysis 

and forecasting methods, can be used to generate skillful LRFs of Arctic sea ice 

anomalies at lead times of one to five months in support of potential naval 

operations and navigation in the Arctic. 
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B. PRIOR WORK AND EXISTING ARCTIC SEA ICE PRODUCTS 

1. Definitions 

 Sea ice concentration (SIC) is the fraction or percentage of the ocean area 

that is covered by ice.  SIC is non-dimensional (no units).  Sea ice extent (SIE) is 

defined as the area of the ocean that contains at least 15% SIC.  The standard 

unit for SIE is km2.  The term ice free refers to the area of the ocean that contains 

less than 15% SIC.  These definitions and those of other related terms are 

available at the National Snow and Ice Data Center (NSIDC) web site (NSIDC 

2010c). 

2. Prior Research  

A number of prior studies have investigated Arctic sea ice variations and 

methods for predicting those variations.  

Lindsay et al. (2007) showed that the SIE for the entire Arctic declined in 

both March (maximum sea ice extent month) and September (minimum sea ice 

extent month) during 1958–2005 (Figure 3).  They constructed a statistical 

forecast model to predict Arctic-wide September SIE using four atmospheric 

teleconnection indices and sea ice variables extracted from the Pan-Arctic Ice-

Ocean Modeling Assimilation System (PIOMAS).  For information regarding 

PIOMAS, see Section 3.a.  Their study concluded that the most viable way to 

predict Arctic SIE in September is to consider SIC in the early summer.  Above 

(below) average SIC in the early summer months lead to anomalously high (low) 

sea ice extent in September.  At longer lead times, they suggested using Arctic 

ocean temperatures as the primary predictor, given that ocean climate variations 

tend to occur on longer timescales than those in the atmosphere and the 

overlying sea ice. 
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Figure 3. Estimated Arctic wide sea ice extent for March (upper) and 

September (lower) from 1958–2005.  The black lines through the time series 
show the linear trend for the 48-year period.  See main text for information 
pertaining to how the data was obtained.  Image from Lindsay (2008). 

Barnett (1980) showed that when SIC increased (decreased) north of 

Alaska during the summer and fall seasons, a strong (weak) Siberian high and 

weak (strong) Arctic high tended to occur in the preceding months.  Barnett 

argued that a strong (weak) Arctic high leads to anomalous easterly (westerly) 

winds through the Beaufort Sea and Chukchi Seas.  These anomalous winds 

result in an anomalous westward (eastward) transport of ice through the Beaufort 

Sea, resulting in less (more) ice and favorable (unfavorable) conditions for 

navigation.  Barnett developed an LRF method for predicting sea ice north of 

Alaska based on the sum of 1000 hPa geopotential heights in April at two 

different geographical points.  In this method, if the sum of the 1000 hPa 

geopotential heights is greater (less) 290 m, then sea ice is predicted to be 

higher (lower) than average in the late summer and fall months in the Beaufort 

Sea.  Drobot (2003) showed that the Barnett LRF method showed relatively good 

skill for the years 1953 through 1975, but that it did not validate well from 1975 

through 2000.   

Barnett (1980) led to the development of the Barnett Severity Index (BSI), 

an index that monitors the severity of summer sea ice in the Beaufort Sea.  The 



 7

BSI is a linear combination of the following: 1) the distance in nautical miles from 

Point Barrow northward to the ice edge on 15 September, 2) the distance from 

Point Barrow, AK, northward to the 4/8th ice concentration line on 15 September, 

3) the number of days the entire sea route from the Bering Strait to Prudhoe Bay 

is ice free in a calendar year, 4) the number of days the entire sea route from 

Prudhoe Bay is less than or equal to 4/8th ice concentration in a calendar year, 

and 5) the temporal length of the navigable season, defined as the time period 

from the initial date the sea route is less than 4/8th ice concentration to 1 October 

(Drobot 2003). 

Drobot (2003) investigated methods to forecast the BSI at lead times of 

several months using 16 different atmospheric teleconnection indices, sea ice 

concentration, and heating degree days (HDD) at Point Barrow as possible 

predictors.  Drobot found that the most significant predictor of the BSI was sea 

ice concentration in the preceding months, specifically the multiyear ice gradient 

and the total ice concentration in the Beaufort Sea.  HDDs were the least 

significant predictor.   

Liu et al. (2004) found that sea ice tends to decrease (increase) in the 

Greenland Sea, the Barents Sea, and the Sea of Okhotsk (the Bering Sea, the 

southern Chukchi/Beaufort Seas, and the Northwest Passage) during a positive 

phase of the Arctic Oscillation (AO) due to an increase of warm (cold) air 

advection resulting from altered wind patterns.  Liu et al. (2004) also found that: 

(a) the Hadley circulation in the eastern tropical Pacific (tropical Atlantic) tends to 

intensify (relax) during El Niño events due to the increased (decreased) pole-to-

equator meridional temperature gradient; (b) the increased (decreased) Hadley 

circulation results in an increased (decreased) Ferrel circulation and therefore an 

increase of anomalous poleward (equatorward) mean meridional heat flux into 

the Arctic; and (c) the net result of these changes is increased (decreased)Arctic 

air temperature that limits (encourages) Arctic sea ice growth. 

However, Comiso et al. (2008) and Deser and Teng (2008) found that the 

AO may have been a major factor driving Arctic sea ice variability in the past but 
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has not been such a strong factor in recent years .  Comiso et al. (2008) showed 

that despite decadal scale changes in the sign and intensity of the AO and the 

North Atlantic Oscillation (NAO), sea ice coverage in the Arctic has continued to 

decline 9–10% per decade.  They suggest that warming conditions in the Arctic 

may be overriding the connection between these two oscillations and Arctic sea 

ice variability.  Deser and Teng (2008) found that the AO was predominately 

positive from 1979–1993 and that the overall Arctic SIC trends in that period 

were consistent with what would be expected during a positive AO based on the 

findings of Liu et al. (2004).  However, for the more recent period of 1993–2006, 

Deser and Teng found that the AO was predominately negative, but the SIC 

trends were not consistent with what would be expected during a negative AO 

based on Liu et al. (2004).  Deser and Teng showed that the Arctic region 

experienced an overall net decrease in SIC from 1993–2006, despite the decadal 

scale change in the phase of the AO. 

Tseng (2010) extracted several atmospheric variables from the European 

Centre for Medium-Range Weather Forecasts Reanalysis-15 to investigate 

possible connections between anomalous sea ice variability (ASIV) in the Arctic 

and different atmospheric parameters.  Sea ice data for this study was extracted 

from the Naval Postgraduate School (NPS) pan-Arctic coupled ice-ocean model 

(NAME).  Atmospheric parameters tested were 2-m temperature, downward 

shortwave and longwave fluxes, and 10-m zonal and meridional winds and 

stresses.  Tseng found that the atmospheric parameter having the largest 

influence on ASIV was anomalous surface air temperature.  Their results also 

showed that atmospheric forcing alone does not explain all ASIV in the Arctic.   

There are several studies that investigate statistical and numerical 

modeling of Arctic sea ice with lead times ranging from several months to several 

decades.  Ensemble predictions of Arctic sea ice in 2008 were investigated by 

Zhang et al. (2008).  The model used in this study was the PIOMAS model that 

was also used in Lindsay et al. (2007) and is also further discussed in Section 

3.a (below).  The predictions from the model indicated a significant reduction in 
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ice thickness in 2008 due to the unusually warm sea temperatures in summer 

2007 as well as record low ice cover.  Maslowski et al. (2007) investigated ways 

to improve climate modeling of sea ice in the Arctic.  They argue that existing 

global climate predictions are erroneous due to insufficient model resolution or 

inadequate physics (Maslowski et al. 2007).  Sea ice and ocean models are also 

typically configured at fairly coarse resolutions so that they can include the entire 

glove and have the ability to simulate the climate system within computational 

restraints (Maslowski et al. 2007).  These are limitations that have a negative 

impact on modeling sea ice in the Arctic and therefore inhibit our ability to predict 

future changes.  In their study, they investigated the use of regional high-

resolution models to approach Arctic climate studies and found that sea-ice 

variability can be reproduced with these models as long as the atmospheric and 

oceanic forcings included within the model are accurate (Maslowski et al. 2007). 

3. Examples of Existing Arctic Long-Range Sea Ice Products  

 Several different sea ice products are presently available from both U.S. 

Department of Defense (DoD) organizations and non-DoD organizations.  Short-

range forecasts of the Arctic are limited to lead times of several days and do not 

show skill at longer leads. Long-range sea ice products are more useful for 

operational and strategic planning of operations in the Arctic.  Examples of long-

range products are outlined in this section. 

a. Non-DoD Products 

 The Study of Environmental Arctic Change (SEARCH) is a non-

profit, civilian, multi-agency program that is part of the Arctic Research 

Consortium of the United States (ARCUS; ARCUS 2010).  SEARCH facilitates 

system-level investigations of Arctic environmental change (SEARCH 2010).  

One of the products issued by SEARCH is an Arctic sea ice outlook focused on 

the summer sea ice melt season (June-September).  The emphasis is on 

estimates of the September sea ice minimum for the Arctic as a whole and for 
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specific regions within the Arctic.  The outlook is based on forecasts from multiple 

international sources (e.g., experimental forecasts from researchers).  A major 

objective of the sea ice outlook is to summarize all critical data to provide the 

Arctic science community and users of Arctic science information with the best 

information regarding climate change in the Arctic.  The sea ice outlook provides 

estimates of sea ice at lead times of one to three months.  However, the outlook 

is intended mainly as a forum for sharing analyses and experimental estimates of 

sea ice.  It is not a source of forecasts that are ready for operational use by 

decision makers (e.g., Navy planners) (SEARCH 2010).   

The Polar Science Center at the University of Washington has 

developed an experimental coupled ice-ocean ensemble forecasting system 

called PIOMAS, used in the study by Lindsay et al. (2007).  PIOMAS forecasts 

sea ice thickness and extent for the entire Arctic region for lead times up to three 

months.  The developers have stated on their website that PIOMAS still contains 

many uncertainties, and that the purpose of making sea ice predictions is for 

scientific research and education only, and should not be used for operational 

purposes at this time. 

Lindsay et al. (2010) utilized the PIOMAS model in order to develop 

a forecast of September 2010 sea ice conditions near Point Barrow, Alaska.  

They used output from the PIOMAS model as predictors in a statistical 

regression-based model that was used to predict sea ice conditions.  Every 

single prediction based on the regression model yielded below-average ice 

conditions near Point Barrow, Alaska for September 2010.  Zhang (2010) also 

used the PIOMAS model to develop a forecast of September 2010 SIE in the 

Arctic region.  They forecasted that the September 2010 SIE would be 

approximately 4.7 million square kilometers.  This is based on ensemble 

predictions from the PIOMAS model starting on 01 June 2010.  Both of these 

studies for research purposes and appear in the SEARCH 2010 sea ice outlook 

(SEARCH 2010). 



 11

b. DoD Products 

The North American Ice Service (NAIS) is an international 

organization comprised of the U.S. National/Naval Ice Center (NIC), the 

Canadian Ice Service (CIS), and the International Ice Patrol (IIP).  One of the 

missions of the NAIS is to meet the marine ice information needs and obligations 

of the United States and Canadian governments (NAIS 2010). 

The NIC and CIS jointly release a 30-day sea ice forecast bulletin 

that is generated on the first business day following the 1st and 15th of each 

month during the months of July through December of each year, and covering 

both eastern and western North American portions of the Arctic (NIC 2010).   The 

bulletins are issued as a text document and describe the expected advance or 

retreat of ice in the Arctic region over a 30-day period.  These bulletins are 

intended for use by decision makers at lead times of 30 days or less.   

The NIC and CIS also jointly generate a summer sea ice seasonal 

outlook that is released in June of the same year (NIC 2010).  The outlook is 

issued as a text document and is developed through the analysis of ice growth 

regimes in conjunction with wind and temperature analyses.  This outlook 

provides decision makers with very detailed information about the normal sea ice 

and meteorological regimes for the eastern and western North American portions 

of the Arctic and Hudson Bay, recent observations of sea ice for these regions, 

and a brief text outlook for the timing of sea ice break-up and freeze-up 

conditions based on observed and expected anomalies in air temperature and 

wind patterns.  This outlook provides useful information on the recent and 

present state of sea ice in the North American region but limited textual 

information on upcoming sea ice conditions.  

The Climatology Division at the Fleet Numerical Meteorology and 

Oceanography Center (FNMOC) is able to provide plots of long term mean (LTM) 

SIC for areas and periods of interest to customers.  Such LTM products may be 

useful in environments that do not experience much intraseasonal to decadal 
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variation, since the LTM does not account for climate variations (e.g., variations 

such as the AO and NAO, trends such as long term declines (Figure 2)) 

(Murphree 2008a).  If a Navy decision maker is in need of a sea ice forecast in 

the Arctic, FNMOC generates an image using sea ice data from the one-degree 

resolution Reynolds sea surface temperature (SST) reanalysis data set 

(Reynolds et al. 2002) displaying the LTM SIC for the customer’s region and 

period of interest.  Figure 4 shows an example of the LTM SIC for the Beaufort 

and Chukchi Sea regions in October as produced by FNMOC.   

 

 

Figure 4. Example of a LTM SIC product generated in May 2010 by FNMOC.  
This example shows LTM October SIC in the region of the Chukchi and 
Beaufort seas.  The basic data for this product is SIC data from the Reynolds 
SST reanalysis (Reynolds et al. 2002).  LTM depictions of SIC do not allow 
variations and trends of SIC to be displayed.  Such variations and trends are 
important for state of the science long range climate support of naval 
operations in the Arctic. 

Deser and Teng (2008), Comiso et al. (2008), Lindsay (2008), and 

others have shown that the Arctic has experienced, and continues to experience, 

a significant long term net decline in sea ice per decade.  Barnett (1980), Drobot 

(2003), Liu et al. (2004), and Figure 2 clearly indicate that Arctic sea ice 
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experiences a large amount of interannual variation due to regional and global 

scale climate variations.  Thus, products based exclusively on LTMs are not 

viable representations of sea ice conditions in support of naval operations.  LTM 

products involve extensive averaging that obscures climate variations. 

Our study focuses on explicitly accounting for climate variations in 

developing and testing methods for generating explicit, state-of-the-science LRFs 

of Arctic sea ice that directly support the planning of DoD operations. 

4. Improving Climatology Support Methods  

The optimal climatological support process for DoD would employ: state-

of-the-science: (a) data sets, such as long term, high resolution resolution 

reanalyses of the atmosphere, ocean, land, and ice (e.g., Kalnay et al. 1996; 

Kistler et al. 2001; Saha et al. 2010); and (b) methods, such as statistical and 

dynamical prediction methods (e.g., Wilks 2006; van den Dool 2007).  These 

data sets and methods would be used to analyze and forecast the climate 

system in direct support of DoD operations.  A number of prior studies have been 

completed at the Naval Postgraduate School (NPS) that demonstrate how 

improved climatology methods can be used to make significant improvements to 

Navy climatology support.   Moss (2007), Turek (2008), Twigg (2008), Mundhenk 

(2009), Ramsaur (2009), and Heidt (2009), have all shown the importance of 

using advanced climate analysis and long-range forecasting methods to increase 

awareness at long lead times of the potential impacts of climate impacts on 

military operations. 

Figure 5 shows an example of an eight step method to be followed to 

provide advanced climate support (Mundhenk 2009).  Once the customer 

submits a request for climatology support, the first step is to gather the state-of-

the-science, advanced data sets to be used to generate a forecast for the area 

and time period of interest.  Step two is to analyze the climate system using 

advanced methods from the data sets chosen in step one.  Step three is to 

develop a forecast method based on the climate system analysis.  Step four is to 
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test the forecast method from step 3 by making multi-decadal hindcasts.  Step 

five is to verify the hindcasts.  If the hindcasts verify well, then step six is to 

develop a forecast, and step seven is to implement the generated forecast into a 

climate support package, including with decision support information and 

recommendations, that is given to the customer.  The final step is to assess the 

support provided by: (a) verifying the forecast given to the customer and (b) 

analyzing how the forecast impacted the customer’s mission.  Based on these 

assessment steps, decisions can be made about how to improve the overall 

climate support process.  In practice, many customer requests can be 

anticipated, so that many of these steps (e.g., steps 1–4) could be partially or 

fully completed in advance of receiving customer requests.  For example, Navy 

customer requests for SIC forecasts could be anticipated for many locations, 

periods, and types of naval operations.  

 

Figure 5. Eight steps in providing advanced climate support.  Image adapted 
from Mundhenk (2009). 
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C.  ACHIEVING THE ARCTIC ADVANTAGE 

Predicting Arctic SIC at lead times of one to five months is a very difficult 

task that will require on-going and new research efforts.  Not only does Arctic sea 

ice undergo large variations from year to year, but sea ice has been experiencing 

an overall declining trend (e.g., Figure 2).  It is important for the Navy to 

understand sea ice variations and trends by taking into account the conditions in 

the atmosphere, ocean, and land that create them.  Thus, the Navy should be 

researching, testing, and producing products and concepts of operations that can 

give Navy decision makers the best advantage for planning for planning 

operations in the Arctic. 

The Battlespace on Demand (BonD) concept was developed by the 

Commander, Naval Meteorology and Oceanography Command (CNMOC) to 

describe the CNMOC concept of operations for providing information on the 

battlespace environment to warfighters (Murphree 2008a).  As shown in Figure 6, 

the BonD concept has four tiers.  Tier zero focuses on environmental 

observations from a variety of sources (e.g., in situ and remote sensing sources).  

Tier one focuses on environmental analyses and predictions based on the data 

from tier zero.  Tier two focuses on predicting how the performance of military 

equipment will be affected by the conditions predicted in tier one.  Tier three 

focuses on predicting for decision makers how to best exploit the environmental 

and performance conditions predicted in tiers one and two.   
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Figure 6. Schematic illustration of the Battlespace on Demand (BonD) 
concept of operations as developed by CNMOC for the Navy meteorology 
and oceanography (METOC) community.  Pink boxes represent the 
integration of climate science based long range support within each of the 
four BonD tiers.  Figure adapted from Murphree 2008a. 

The BonD con0cept was developed to describe the concept of operations 

for providing environmental support for warfighters at short lead times (e.g., lead 

times of 0 to 72 hours).  But the BonD concept also applies to long-range 

environmental support as well.  The pink text boxes in Figure 6 describe how 

advanced climate science can be integrated into each tier of the BonD concept.   

In this study, we have used advanced climate data sets and methods to create 

and test methods for generating LRFs of Arctic sea ice.  These LRFs are 

intended to be the basis for long-range environmental support at tiers two and 

three. 
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D. SCOPE OF RESEARCH 

1. Research Questions 

In our study, we researched, tested, and explored the potential for using 

advanced climatology data sets and methods to produce LRFs of sea ice in the 

Arctic in support of warfighters and other decision makers, as they plan and 

conduct operations in the Arctic region.  This study focused mainly on answering 

the following research questions: 

1) What atmospheric and oceanic variables are the most viable predictors 

of sea ice anomalies in regions of interest within the Arctic? 

2) Can advanced climate data sets and methods be used to forecast sea 

ice anomalies in the Arctic to provide warfighters and other decision makers with 

an improved understanding of the environment as they plan to operate in the 

Arctic? 

3) What are the best methods of assessing the skill and operational value 

of LRFs of sea ice anomalies in the Arctic? 

2. Thesis Organization 

To answer these research questions, we followed a methodical approach 

of conducting climate analyses and creating and testing LRF methods for 

producing long-rage forecasts of Arctic sea ice within areas of interest. 

Chapter II provides: (a) a summary of the data sets that we used in this 

study; (b) a description of the area and period of interest and the reasons for 

choosing them; (c) the methods and tools used to analyze, develop, and test 

LRFs of sea ice in the area and period or interest.  Chapter III provides: (a) an 

overview of the seasonal variation of SIC within our area and period of interest; 

(b) a summary of the results of our LRF development and testing; and (c) a 

forecast issued on 01 June 2010 of SIC in the Beaufort Sea during October 

2010.  Chapter IV summarizes our results and provides suggestions for further 

research. 
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II. DATA AND METHODS 

A. DATA SETS  

1. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I 
Passive Microwave Data 

The sea ice data set for our study consisted of monthly mean SIC data 

based on satellite passive-microwave observations of the Arctic for the period 

October 1978—December 1979 (NSIDC 2010b).  In situ, observations of sea ice 

are too limited spatially and temporally to be useful for long term studies of sea 

ice (cf. Comiso et al. 2008).  We obtained the sea ice data from the National 

Snow and Ice Data Center (NSIDC).  This data has been extensively used for 

Arctic sea ice research in the past. (e.g., Deser and Teng 2008).  The data set is 

generated from brightness temperature derived from Nimbus-7 Scanning 

Multichannel Microwave Radiometer (SMMR) and Defense Meteorological 

Satellite Program (DMSP) –F8, -F11, and -F13 Special Sensor Microwave / 

Imager (SSM/I) radiances (NSIDC 2010b).  Table 1 gives an overview of the 

temporal coverage used by each sensor.  The spatial resolution is 25 km and the 

spatial coverage includes both polar regions.  We were only interested in the 

northern hemisphere polar region data for this study.  Figure 7 shows the polar 

stereographic projection and grid spatial coverage map for the northern 

hemisphere polar region used in this study.  
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Table 1. Temporal coverage for each platform and instrument used within 
the NSIDC SIC data set that was used in this study. Information adapted 
from NSIDC (2010b). 

Platform and Instrument Time Period 

Nimbus-7 SMMR 26 October 1978 - 20 August 1987 

DMSP –F8 SSM/I 9 July 1987 - 31 December 1991 

DMSP –F11 SSM/I 3 December 1991 - 30 September 1995 

DMSP –F13 SSM/I 3 May 1995 - 31 December 2007 

 

Figure 7. The region of the Arctic covered by the SIC data set used in this 
study is outlined by the rectangular box centered near the North Pole.  The 
latitudes and longitudes of the corners of the box are shown in red text.  
Figure from NSIDC 2010b. 

The temporal coverage of the SIC data set is from October 1978 to 

December 2007 (NSIDC 2010b).  For our study, we used the monthly mean SIC 

from January 1979 to December 2007, containing data for 348 months (29 

years).  The SMMR instrument scanner operated on every other day due to 

power limitations.  As a result, the SMMR data was collected every other day, so 

a typical month contained at least 14 days of coverage.  SSM/I data was 
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collected every day.  The data set we used represents a merger of data from 

both sensors.  The merged data set provides a uniform time series of SIC 

spanning the coverage of several passive microwave sensors.  To accomplish 

this merger, sea ice algorithm coefficients were adjusted to account for 

differences in sea ice extent and area estimates when using the SMMR and 

SSM/I sensors (NSIDC 2010b).  The merger of the data from the two sensors 

was accomplished using the National Aeronautics and Space Administration 

(NASA) algorithm developed by the Ocean and Ice Branch, Laboratory for 

Hydrospheric Processes at the NASA Goddard Space Flight Center (NSIDC 

2010b). 

Both the SMMR and SSM/I data sets have gaps in their coverage near the 

north pole due to inclinations in their orbits.  These gaps differ for the two 

sensors due to orbital differences.  The SMMR polar gap has a radius of 

approximately 611 km centered on the North Pole, so that the gap extends 

poleward from 84.5° N.  The SSM/I instrument polar gap has a radius of 

approximately 311 km, so that the gaps extends poleward from 87.2° N (NSIDC 

2010b).  For our study, we removed SSM/I data from 84.5° to 87.2° to make the 

polar gap the same size as the SMMR data, so that the data set has a consistent 

polar gap from beginning to end.  Our primary interest was in long-range 

forecasting of sea ice in areas where SIC varies by large amounts.  At and near 

the north pole, these variations tend to be small compared to other areas of the 

Arctic.  Thus, the polar gaps were not a significant problem for our study. 

In December 2007, the processing of this SIC data set was briefly 

postponed due to the loss of the DMSP -F13 satellite.  NSIDC is currently 

working with Remote Sensing Systems (RSS) to acquire the SIC data from the 

DMSP -F17 satellite to calibrate with the October 1978—December 2007 SIC 

data set.  They estimated that the data will be processed and available by June 

2010.  By the time our project concluded in June 2010, NSIDC had not 

completed the calibration.  Thus, the last date for the SIC data we used in this 

study was December 2007. 
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2. NCEP / NCAR Atmospheric Reanalysis 

Our atmospheric data came from the National Centers for Environmental 

Prediction (NCEP) / National Center for Atmospheric Research (NCAR) 

reanalysis (R1) data set (Kalnay et al. 1996; Kistler et al. 2001).  The R1 data set 

is the result of a global retrospective analysis (i.e., a reanalysis) of climate 

system observations from January 1948 to the present.  The reanalysis uses 

data assimilation, spectral statistical interpolation (SSI), and dynamical analysis 

processes that are the same for all times.  The dynamical analysis uses a 

T62/28-level global spectral model.  In situ and remote observational data used 

in the R1 process include: global rawinsonde data, Comprehensive Ocean-

Atmospheric Data Set (COADS) surface marine data, aircraft observations, 

surface land synoptic data, satellite sounder data, SSM/I surface wind speeds, 

and satellite cloud drift winds (Kalnay et al. 1996).  All data in the NCEP/NCAR 

Reanalysis is run through a monitoring system to perform quality control checks.  

The R1 data has a spatial resolution of 2.5° at standard tropospheric and 

stratospheric levels, and has a temporal resolution of six hours (Kalnay et al. 

1996). 

We chose this data set for a number of reasons.  In particular, the R1 data 

set has the capacity to capture low frequency climate variations, it is very 

accessible to the scientific community, and it has been used extensively in past 

Arctic research.  In addition, the NOAA Earth Systems Research Laboratory 

(ESRL) website provides advanced plotting and data analysis tools for R1 data 

that aided us in the process of selecting possible predictors of SIC in the Arctic.  

The main R1 variables that we used in the study were 850 hPa geopotential 

heights (m), surface skin temperature (°C), surface vector wind (m/s), and 

surface air temperature (°C).  Section C1 discusses how we used the ESRL 

mapping tools to test these variables to aid in the process of selecting potential 

predictors of SIC. 
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3. Simple Ocean Data Assimilation (SODA) Oceanic Reanalysis  

The Simple Ocean Data Assimilation (SODA) reanalysis data set is a 

global reanalysis of the ocean covering January 1958 to December 2008 (Carton 

et al. 2000; Carton and Geise 2008).  Like the R1 data set, the SODA data set 

was developed by assimilating and dynamically analyzing ocean in situ and 

remote ocean observations using a fixed set of data assimilation and dynamical 

ocean model analysis processes.  The in situ observations incorporated into the 

SODA reanalysis include: hydrographic profile data, ocean station data, moored 

temperature and salinity observations, and surface temperature.  Most of this 

data set was acquired from the World Ocean Database 2001.  Additional 

observational data included data from the National Oceanographic Data Center 

(NODC), NOAA temperature archive, Tropical Atmospheric-Ocean / Triangle 

Trans-Ocean Buoy Network (TAO/TRITON) mooring thermistor array, Advanced 

Research and Global Observation (ARGO) drifter data from Woods Hole 

Oceanographic Institute (WHOI), and bucket temperatures from the COADS 

were also used.  Remote sensing data incorporated into the SODA reanalysis 

included the NOAA/ NASA Advanced Very High Resolution Radiometer 

(AVHRR) operational SST, Quikscat winds, and satellite altimetry data.  In order 

to reduce error associated with surface skin temperature effects, only nighttime 

retrievals were used.   

The SODA reanalysis uses a dynamical analysis process based on a 

numerical ocean general circulation model (GCM) that is based on Parallel 

Ocean Program (POP) numerics.  Atmospheric forcing fields for the ocean model 

include daily surface wind stresses derived from the European Reanalysis 

(ERA)-40 reanalysis, and surface freshwater fluxes from the Global Precipitation 

Climatology Project. 

For our study, we used SODA reanalysis data from version 2.0.2 for years 

1979–2001 and version 2.0.4 for years 2000–2007.  This gave us an ocean 

reanalysis data period that matched the 1979–2007 period of the satellite 

passive-microwave SIC data set from NSIDC.  SODA has a spatial resolution of 
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approximately 0.25 degrees, a temporal resolution of five days, and a spatial 

coverage of 72.25°S—89.25°N and 0°-360°E.  For this study, we used monthly 

mean fields and the full global domain, but with a focus on the Arctic.  We also 

used the same polar stereographic projection used for the SIC data set from 

NSIDC shown in Figure 7.  The main SODA variables we used in this study were 

ocean temperature (°C), zonal ocean velocity (m/s), and meridional ocean 

velocity (m/s).   

SODA provides data at 40 vertical levels ranging from 5 m to 5374 m.  

Table 2 overviews the vertical spatial coverage used for each variable in this 

study.  Only the highest depth was used to represent ocean temperature close to 

the sea surface (e.g., at or just below the base of the sea ice).  However, we 

investigated the relationships between the temperatures at the uppermost three 

levels and found them to be very well correlated.  To represent upper ocean 

currents, we averaged the ocean velocity variables from the 5 m to 57 m.  This 

averaging was done mainly to obtain an integrated representation of the net 

currents and advections likely to affect sea ice. 

Table 2. Vertical extents used in this study for the SODA oceanic variables 
used in this study..   

Oceanic Variable Vertical Extent 

upper ocean temperature (°C) 5 m depth only 

zonal ocean velocity (m/s) 5-57 m 

meridional ocean velocity (m/s) 5-57 m 

We checked the validity of the SODA data set by visually comparing LTM 

ocean currents in the Arctic region as depicted by the SODA data set and by 

Tomczak and Gidfrey (1994).  We found that the two depictions were very similar 

and concluded that SODA provides a reasonable representation of at least LTM 

Arctic ocean circulations.  Prior studies have found that SODA also provides 

realistic depictions of ocean climate variations in the tropics, midlatitudes, and 
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subpolar regions (e.g., Carton et al. 2000; Carton and Geise 2008; Heidt 2009).   

For more detailed information on the SODA data set and its applications in ocean 

climate analysis and long range forecasting, refer to Carton et al. (2000), Carton 

and Geise (2008), and Heidt (2009). 

4. Climate Variation Indices 

We investigated the relationships between Arctic SIC and four different 

global scale atmospheric variations: (a) El Niño - La Niña (ENLN), Arctic 

Oscillation (AO), North Atlantic Oscillation (NAO), and the Pacific North American 

(PNA) teleconnection pattern.  To represent ENLN, we used three indices: the 

Southern Oscillation Index (SOI), Nino 3.4 index (Nino3.4), and Multivariate El 

Niño – Southern Osciallation Index (MEI).  To represent the AO, NAO, and PNA, 

we used the AO index (AOI), NAO index (NAOI), and PNA index (PNAI).  Further 

information on these variations and indices is available from Earth Systems 

Research Laboratory (ESRL 2010), which was also the source of the time series 

data for these indices that we used in this study. 

B. FOCUS REGION, FOCUS PERIOD, AND PREDICTAND SELECTION 

1. Focus Region 

We conducted analyses for the entire Arctic but chose as our focus region 

the Beaufort Sea.  Figure 8 shows the Beaufort Sea region that we defined for 

our focused analyses and forecasts.  This region is extends from approximately 

70°N to 72°N and from 148°W to 128°W.  
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Figure 8. Beaufort Sea study region used in this study (white box).  This area 
lies between approximately 70° - 72°N and 148° - 128°W. Background image 
from Google Earth, accessed March 2010. 

Our reasons for choosing this focus region were both operational and 

scientific.  There are two major sea navigation routes in the Arctic—the 

Northwest Passage (NWP) and the Northern Sea Route (NSR), as illustrated in 

Figure 9.  The NWP extends along the northern coast of North America, and the 

NSR is extends along the Russian Arctic coast.  Both routes connect the Atlantic 

and Pacific Oceans and can potentially allow ships to transit through the Arctic 

between the Atlantic and Pacific, if ice conditions are favorable.  Our Beaufort 

Sea focus region lies along he NWP, is close to the U.S. and allied territory 

(Alaska and Canada), overlaps partially with the U.S. exclusive economic zone,  

and contains areas of interest for resource exploration and development (e.g., oil 

and gas operations).  
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Figure 9. The two major Arctic sea routes—the Northwest Passage (NWP) 
and Northern Sea Route (NSR). Image from UNEP/GRID-Arendal Maps and 
Graphics Library [accessed online at http://maps.grida.no/go/graphic/arctic-
sea-routes-northern-sea-route-and-northwest-passage] May 2010. 

SIC in the Beaufort Sea undergoes relatively large climate variations (e.g., 

long term declines, interannual variations).  Figure 10 shows the monthly rate of 

SIC change during August 1987 – December 2007.  The green-blue (orange-red) 

shading indicates a negative (positive) rate of change and a net decrease 

(increase) in SIC during the period.  Note that large (small) areas of the Arctic 

experienced long term decreases (increases) in SIC.  The total percent change 

during the period can be calculated using the total number of months during the 

period (245 months).  For example, an area shaded in medium blue indicates a 

rate of change per month of -10x 10-4, which corresponds to a 24.5 percent total 

decline in SIC during the approximately 20 year period of the analysis shown in 

Figure 10.  The Beaufort Sea is a region with relatively large long term declines.  

These decadal scale declines in SIC make climate analyses and long-range 

forecasts for this region especially important, both operationally and scientifically.    
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Figure 10. Rate of change of Arctic SIC per month (fractional change per 
month) during August 1987–December 2007.  Green and blue (orange and 
red) indicate long term decreases (increases) in SIC.  Yellow indicates no 
change or no ice.  Purple indicates areas in which SIC was less than 5% for 
every month during August 1987–December 2007.  The circular area near the 
North Pole shown in white indicates an area of no SIC data (see Chapter II, 
Section A.1).  Note that long term decreases have been much larger in some 
areas than others, and that long term increases have occurred only in 
relatively small areas.   

Figure 11 shows the standard deviation of SIC in the Arctic based on SIC 

data for January 1979 - December 2007.  The Beaufort Sea is a region with 

relatively high annual standard deviation of SIC (0.15 to 0.4).  This evidence of 

variability, like that shown in Figure 10, indicates that climate analyses and LRFs 

for the Beaufort Sea are especially important.  Skillful LRFs of SIC for a basin 

that undergoes large SIC variations will tend to be more valuable than those for 

basins with little or no SIC variation.  For low variability areas, LTMs will tend to 

provide relatively good indications of future conditions. 

<5% ice 
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Figure 11. Standard deviation of Arctic sea ice based on SIC data from 
January 1979 - December 2007.  The Beaufort Sea region (outlined by black 
box) has a SIC standard deviation of approximately 0.15 to 0.4.    

2. Focus Period 

We conducted analyses for the entire period of our SIC data set, January 

1979 to December 2007, but we chose to focus on the summer August-October 

period of minimum SIC—and on October in particular.  Figure 12 shows a time 

series of the LTM seasonal cycle of SIC the Beaufort Sea.  August-October is the 

period with the lowest average SIC in the Beaufort Sea, and when the 

atmosphere and ocean are most likely to be switching from conditions which are 

favorable for melting to conditions which are favorable for freezing.  Thus, this is 

an especially important period from an operational (e.g., navigation) perspective.  

All three of these months display a high variation of SIC in the Beaufort Sea 
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(Figure 13).  September has been and is the focus period for many sea ice 

prediction efforts, since that it is when Arctic wide SIE is at its minimum.  We 

chose to focus our LRF efforts on October because October tends to have: (a) 

low SIC values; (b) large increases in SIC; and (c) high variability in the Arctic 

and globally as the northern hemisphere transitions from summer to winter (cf. 

Turek 2008; Ramsaur 2009; Heidt 2009).  These features of October make it an 

especially important and challenging month for which to develop climate 

analyses and LRFs of SIC. 

 

 

Figure 12. LTM seasonal cycle of SIC in the Beaufort Sea based on data from 
January 1979—December 2007.  SIC is at a minimum in August—October as 
the Beaufort Sea transitions from conditions favorable for melting to 
conditions favorable for freezing. 
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Figure 13. Average monthly SIC standard deviation in August, September, 
and October based on data from January 1979–December 2007. The 
Beaufort Sea experiences the most variability in SIC during these months.  

3. Predictand Selection 

Based on our choice of focus region and focus period, we selected as our 

predictand (i.e., our forecast target) SIC averaged over: (a) our Beaufort Sea 

area; and (b) October.  This is the predictand for which we developed and tested 

our long-range forecasting methods. 

C. ANALYSIS AND FORECASTING METHODS 

1. Composite Analyses, Correlations, and Teleconnections 

We constructed the time series for our predictand—that is, a time series of 

SIC in the Beaufort Sea for Oct 1979-2007.  From this time series, we identified 

the five years with the highest and lowest SIC in October.  We then developed 

composites of global and regional conditions by averaging the conditions during 

the five high years and five low years.  We used these composites to assess the 

patterns and processes during extreme SIC years.  In particular, we used the 

extreme event composites to identify potential predictors of, and the dynamical 

processes that influence, Oct SIC in the Beaufort Sea.  We focused on 

composites based on just the high five and low five periods because composites 

based on more than five events tend to include weaker events and tend to 

obscure important climate patterns, processes, and mechanisms of interest.   

AUG SEP OCT 
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Our primary focus was on composites of anomalous conditions during and 

prior to the five high and low SIC periods.  These anomalies were especially 

useful in: (a) analyzing the patterns and processes that may have created the 

anomalously high and low SIC events; and (b) identifying potential predictors of 

SIC.  All the anomalies in our study were calculated using a base period of 1968-

1996 to be consistent with the LTM base period used by the ESRL online data 

access, analysis, and plotting tools (ESRL 2010).    

We correlated our predictand time series with a wide range of climate 

system variables (e.g., SST, air temperature, geopotential heights, low level 

winds, climate variation indices) to identify potential predictors of our predictand.  

We identified as the variables with the most potential as predictors those that had 

strong and significant correlations with the predictand when the variable led the 

predictand by zero to five months.   

We also used the composites and correlation analyses to identify potential 

teleconnections and dynamical processes that affect the predictand.  A 

teleconnection is defined as a statistical and/or dynamical linkage between 

remote climate system variables (e.g., atmospheric pressure in the North Atlantic 

and SIC in the Beaufort Sea).  

2. Potential Predictor Selection 

We used the results of our composite anomaly, correlation, and 

teleconnection analyses to identify climate system variables for consideration as 

potential predictors of our SIC predictand.  We considered a variable a potential 

predictor if it met at least one of the following criteria: 

a. was identifiable in the composite analyses of the extreme high or 

low years of SIC.  If the variable displayed anomalous patterns in 

the composite analyses, it was considered identifiable. 

b. had a significant correlation with our predictand (October SIC in the 

Beaufort Sea) at leads of zero to five months.  A correlation was 
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considered significant at the 95% level if the magnitude of the 

coefficient was the greater than 0.363, based on the standard 

normal distribution of a two tailed test (Wilks 2006). 

c. was consistent with the findings in prior studies of long range 

forecasting of sea ice conditions in the Arctic. 

After choosing the potential predictors, we compared their time series with 

that of the predictand at all lead times.  This allowed us to: (a) visually check the 

predictor-predictand correlations; (b) identify intraseasonal to decadal variations 

in the relationships between the predictor and predictand; (c) identify periods and 

lead times for which the correlations were relatively strong and weak; and (d) 

identify case studies for additional statistical and dynamical analyses, and 

hindcast testing. 

3. Linear Regression 

A simple linear regression model describes the relationship between a 

predictor variable and a predictand variable.  We ran a linear regression between 

each selected predictor variable and our predictand (October SIC in the Beaufort 

Sea), with the predictor leading by one to five months.  To measure the fit of 

each regression, we calculated the correlation coefficient (R), the coefficient of 

determination (R2), and the p-value.  For each lead time, we ranked the variables 

by their R2 value.  We considered a variable a potential predictor if it was highly 

ranked by its R2 at each lead time and exhibited a low p-value.  Our goal was to 

select an optimal combination of predictors from which to build a multivariate 

linear regression model to use in forecasting our predictand at leads of one to 

five months.  We created different predictor combination options based on high 

R2 values and low p-values.  For more information on linear regressions, refer to 

Wilks (2006) or any other college-level statistics textbook. 
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4. Hindcasting and Forecasting 

Using the multivariate linear regression equations generated from optimal 

combinations of predictors, we generated a hindcast of October SIC in the 

Beaufort Sea for each year and at each lead time.  To do this, we generated a 

regression equation for each year using predictor and predictand data for all 

years 1979–2007, except the year for which the hindcast was being generated.  

Each resulting regression equation was then used to hindcast the predictand for 

the year for which the data had been removed.  For example, for a one month 

lead hindcast for October 1979, we removed the October SIC value from 1979, 

as well as the corresponding predictor values for September 1979.  We then 

performed a regression between the remaining 28 October SIC values and the 

remaining 28 values of each predictor in September to yield a regression 

equation.  Then we plugged the September 1979 predictor values into the 

regression equation to hindcast the SIC for October 1979.  We performed this 

method for all 29 October SIC values and for lead times of one to five months.  

This process is referred to as the leave-one-out cross validation method for 

developing and testing a regression based forecasting method (Wilks 2006). 

This process generated a time series of 29 hindcasted values of October 

SIC in the Beaufort Sea for each lead time and for each combination of 

predictors.  We compared these time series to the time series of actual October 

SIC in the Beaufort Sea to evaluate the performance of each model at each lead 

time, and to identify specific years for further investigation.   

5. Verification 

a. Scalar Accuracy Metrics 

We assessed the hindcasts using two scalar measures of forecast 

accuracy: (a) mean absolute error (MAE); and (b) root mean-squared error 

(RMSE) (Wilks 2006).  TMAE and RMSE are, except that RMSE involves 

squaring the errors rather than using the absolute value.  For both MAE and 

RMSE, a value of zero indicates the forecasts were perfect, meaning that each 
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hindcasted average October SIC value was equal to the actual average October 

SIC value.  Both the MAE and the RMSE can be interpreted as the magnitude of 

the typical forecast error. 

b. Contingency Table Metrics 

In this study, we used 2x2 contingency tables (Wilks 2006) to 

summarize and verify the results of each hindcast of October SIC in the Beaufort 

Sea.  To apply this method, we grouped each of the 29 years of actual average 

October SIC values, and each of the 29 years of hindcasted October SIC values, 

into above normal (AN) or below normal (BN) categories.  The average of the 29 

actual October SIC values was 0.55061.  Thus, if the SIC value (actual or 

forecasted) was greater than (less than or equal to) 0.55061, then the SIC was 

considered above (below) normal for that year.  Table 3 shows an example of the 

contingency table into which we entered information on the number of:  

(a) hindcasted AN years that matched with actual AN years (cell A in the table); 

(b) hindcasted AN years that matched with actual BN years (cell B in the table); 

(c) hindcasted BN years that matched with actual AN years (cell C in the table); 

(b) hindcasted BN years that matched with actual BN years (cell D in the table). 
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Table 3. Schematic of the contingency table we used to verify our hindcasts 
of October SIC values for the Beaufort Sea.  A represents the number of 
instances where AN was hindcasted and observed, B represents the 
number of instances where AN was hindcasted and BN was observed, C 
represents the number of instances where BN was hindcasted but AN was 
observed, and D represents the number of instances where BN was 
hindcasted and BN was observed.  Note that a different contingency table 
for each lead time and each regression model, but all of them had the 
same form as the table shown here. 

  OBSERVED 
  AN BN 

AN A B 

H
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D
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From our contingency table results, we calculated four different 

verification metrics.  The first is the percent correct (PC), which is simply the 

percent of forecasts that correctly predicted the subsequent event.  PC is 

calculated as: 

 
PC =  

(1) 

where n is the total number of hindcasts.  In our study, n = 29 based on 29 years 

of data. 

The second verification metric is false alarm rate (FAR).  It 

quantifies the proportion of forecasts that are considered failures, so smaller FAR 

indicates better forecast performance.  There are two FAR values that take into 

consideration AN and BN SIC occurrences.  FAR is calculated as: 
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FAR = , for AN 

FAR = , for BN 

(2) 

(3) 

The third verification metric is probability of detection (POD).  The 

POD is the fraction of instances when the forecasted event occurred.  Like FAR, 

there are two POD values to consider both AN and BN SIC instances.  POD is 

calculated as: 

 
POD = , for AN 

POD =  , for BN 

(4) 

(5) 

The fourth and final verification metric is the Heidke skill score 

(HSS).  The HSS quantifies the skill after removing credit for accurate forecasts 

that could have been achieved by random forecasting.  Random forecasts are 

the reference forecasts that the actual forecasts are measured.  An HSS of one 

indicates perfect forecasts; HSS of zero indicates forecast that have no skill over 

the reference forecast; and HSS less than zero indicates forecasts that have less 

skill than the reference forecast.  HSS is calculated by using this equation: 

 HSS = 

 

(6) 

Verifying with several metrics is more valuable than verifying with 

an individual metric, because multiple metrics provide a more complete 

assessment of forecast performance.  For more information about the verification 

metrics used in this study, refer to Wilks (2006).   

We used the following criteria to assess the hindcast performance 

of each regression model and to determine whether the predictors used in that 

model were viable (criteria adapted from Heidt (2009)). 
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1) PC values greater than 0.5 

2) POD equal to or greater than FAR 

3) HSS values of 0.3 or greater 

If all three criteria were met, we labeled the regression model as 

skillful and the predictors used in that model as viable predictors of October SIC 

in the Beaufort Sea. 

D. SUMMARY OF LONG RANGE FORECAST METHODS 

Figure 14 is a flow chart of the set of processes used in this study to 

analyze climate variations and choose viable predictors of October SIC in the 

Beaufort Sea at lead times of several months.  These processes use advanced 

atmospheric and oceanic reanalysis data, as well as advanced passive-

microwave satellite based sea ice data.  These processes include climate 

analyses using advanced statistical methods to identify climate patterns and 

processes that affect sea ice conditions.  For this flow chart, October SIC in the 

Beaufort Sea is the predictand.  But, the chart can be readily adapted for 

predictand periods and areas within the Arctic.  Once the predictors are chosen 

at the end of this process, forecasts can be generated. 
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Figure 14. Flow chart of the processes we used to identify predictors for use in 
developing and testing regression models for long-range forecasting of 
October SIC in the Beaufort Sea.  
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III. RESULTS 

A. ANALYSIS RESULTS 

1. Composite Analyses 

To conduct our composite analyses, we constructed a time series of our 

predictand, October SIC in the Beaufort Sea, during 1979–2007 (Figure 15).  

This time series shows large interannual variations and a pronounced long term 

decline that is consistent with the corresponding results for other months for the 

Arctic as a whole (e.g., Figure 2).   

 

Figure 15. Time series of our predictand, October SIC in the Beaufort Sea, 
during 1979–2007.  The bold black line indicates the 1979–2007 LTM 
October SIC in our Beaufort Sea predictand region of 0.5047.  Note the large 
interannual variations and long term downward trend. 

From the predictand time series, we identified the five years with the most 

extreme high and low SIC values (Table 4).  Both 2006 and 2007 were among 

the five extreme low SIC years.  To get a more representative sample of low SIC 

years, we chose to replace 2006 with the sixth lowest year, 1995.  The average 

of the high (low) SIC years is 1991 (1996, or 1998 if 2006 is used instead of 
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1995).  This indicates that extremely high (low) SIC was more common earlier 

(later) in the study period.  This result is consistent with the long term decline in 

SIC shown in Figure 15, and is important in selecting and evaluating base 

periods to use in calculating LTMs and anomalies associated with SIC extremes 

(see Chapter II, Section C.1, and the discussion of Figure 20).   

 
Table 4. Years selected to represent extreme high and low SIC in October in 

the Beaufort Sea.  

Extreme High SIC Years Extreme Low SIC Years 

2001 

1996 

1992 

1985 

1983 

2007 

1998 

1995 

1993 

1987 

 

We used the high and low SIC years shown in Table 4 to construct 

composites of the atmospheric and oceanic conditions associated with high and 

low SIC in October in the Beaufort Sea.  The composites were used to identify: 

(a) the major spatial and temporal patterns and dynamical processes lead to SIC 

variations; and (b) potential predictors of SIC variations (see Chapter II, Section 

C).   

Figure 16a shows the LTM October SIC for the Beaufort Sea and nearby 

regions.  The LTM SIC in October for our Beaufort Sea predictand region (Figure 

8) is approximately 0.50.  Figure 16b shows the October SIC composite mean for 

extreme high SIC years.  The average SIC in October for our Beaufort Sea 

predictand region is approximately 0.82, which is a 64% increase from the LTM.  

Figure 16c shows the October SIC composite mean for the extreme low SIC 

years.  The average SIC in October for our Beaufort Sea predictand region is 

approximately 0.12, which is a 76% decrease from the LTM.  These substantial 
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deviations from the LTM SC value quantify the magnitude of the SIC anomalies 

that the Beaufort Sea can experience.  They also highlight the scientific and 

operational importance of climate analyses and long-range forecasts of these 

anomalies.   

 

Figure 16. Composites of October SIC in the Beaufort Sea and nearby regions 
for: (a) LTM; (b) the five extreme high SIC years in the Beaufort Sea; (c) the 
five extreme low SIC years in the Beaufort Sea.  SIC in the Beaufort Sea in 
the extreme high (low) years was 64% (76%) greater (lower) than the LTM.   

Figure 17 shows the 850 hPa GPH composite anomalies for the extreme 

high and low SIC years (Table 4).  During years with high (low) SIC, there were: 

(a) below (above) average heights over the Beaufort Sea; (b) above (below) 

average heights over Siberia; and (c) below (above) average heights over 

northern central Russia.  These findings are: (a) consistent with Barnett (1980); 

and (b) indicate that high (low) SIC in the Beaufort Sea in October tends to be 

associated with anomalously low (high) pressures and westerly (easterly) winds 

at low levels over the Beaufort Sea that are part of a pan-Arctic pattern of 

anomalous low level heights and winds.  

a b

c

90°N 

60°N, 90°W 

60°N, 180°W 
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Figure 17. Composite anomalies of October 850 hPa GPH (m) for: (a) the five 
extreme high SIC years in the Beaufort Sea and (b) the five extreme low SIC 
years in the Beaufort Sea.  Note the generally negative (positive) anomalies 
in the Beaufort Sea region in the high (low) SIC years.   

Figure 18 shows the corresponding surface vector wind composite 

anomalies for years of high and low SIC in the Beaufort Sea.  For years with high 

(low) SIC, an anomalous cyclonic (anticyclonic) circulation is evident near the 

Beaufort Sea region, consistent with the 850 hPa GPH anomalies (Figure 17).   

 

Figure 18. Composite anomalies of October surface vector winds (m/s) for: (a) 
the five extreme high SIC years in the Beaufort Sea and (b) the five extreme 
low SIC years in the Beaufort Sea.  Note the generally cyclonic (anticyclonic) 
anomalies in the Beaufort Sea region in the high (low) SIC years.   

a b

a b
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Figure 19 shows the surface air temperature composite anomalies for the 

extreme high and low SIC years.  For years with high (low) SIC, there were 

below (above) average air temperatures in the vicinity of the Beaufort Sea.  

These results are physically plausible, since below (above) average air 

temperatures would tend to accelerate (inhibit) sea ice growth in the region.   

 
Figure 19. Composite anomalies of October surface air temperature (°C) for: 

(a) the five extreme high SIC years in the Beaufort Sea and (b) the five 
extreme low SIC years in the Beaufort Sea.  Note the generally negative 
(positive) anomalies in the Beaufort Sea region in the high (low) SIC years.   

Figure 20 shows the 5 m ocean temperature composite anomalies for 

extreme high and low SIC years in October in and near the Beaufort Sea.  Upper 

ocean temperatures were below (above) average in the Beaufort Sea during 

years with high (low) sea ice.  The 5 m ocean temperature composite anomalies 

are similar to those at other levels in the upper 50 m (not shown).  The high SIC 

composite shows temperature anomalies that are only slightly negative, while the 

low SIC composite shows temperature anomalies that are quite positive.  This 

may be a result of our use of the 1968–1996 base period for calculating 

anomalies (see Chapter II, Section C.1, and discussion of Table 4, above).  This 

base period begins and ends about ten years before our 1979–2007 study 

period.  Long term warming of the upper ocean in the Arctic during recent years 

could mean that our base period represents a cooler period than our study 

period.  If so, then our ocean temperature anomalies would tend to be positively 

a b
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biased.  Figure 19 shows some hints of a positive bias in the air temperature 

anomalies as well.  This indicates that additional research on long term trends in 

oceanic and atmospheric temperatures in the Arctic is needed.   

   

Figure 20. Composite anomalies of October 5 m ocean temperature (°C) for: 
(a) the five extreme high SIC years in the Beaufort Sea and (b) the five 
extreme low SIC years in the Beaufort Sea.  Note the generally negative 
(positive) anomalies in the Beaufort Sea region in the high (low) SIC years.   

Figure 21 shows the high and low SIC composite anomalies of ocean 

currents averaged over the upper 5–57 m in the Beaufort Sea and nearby 

regions. The anomalous circulation patterns are not distinct except for an 

anomalous cyclonic (anticyclonic) circulation in the western Beaufort Sea high 

(low) SIC composite, indicated by the bold black schematic arrows.   

 
 

60°N, 180°W 

60°N, 90°W 

90°N 
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Figure 21. Composite anomalies of October ocean current (m/s) averaged 
over 5 to 57 m for: (a) the five extreme high SIC years in the Beaufort Sea 
and (b) the five extreme low SIC years in the Beaufort Sea.  Black arrows 
schematically show the direction of anomalous circulations in the western 
Beaufort Sea where there are generally cyclonic (anticyclonic) anomalies in 
the high (low) SIC composite.   

In summary, our composite analyses revealed several characteristic 

anomalies associated with extremely high (low) SIC in October in the Beaufort 

Sea (BS): (a) anomalously low (high) heights and westerly (easterly) winds at low 

levels over and to the west of the BS; (b) anomalously warm (cool) surface air 

temperatures over and near the BS; and (c) anomalously warm (cool) upper 

ocean temperature in and near the BS; (d) cyclonic ocean currents in the western 

BS.  These height and wind anomalies are consistent with prior studies (e.g., 

Barnett 1980); the temperature anomalies are consistent with the SIC extremes; 

and the current anomalies are broadly consistent with the wind anomalies.  

These results suggest that there are relatively consistent and dynamically 

understandable patterns and processes associated with extremes in SIC in the 

BS.  These results are encouraging because they indicate that statistical and 

dynamical climate analyses, and long-range forecasting methods, have the 

potential to improve long-range operational support. 

 

a b

0.05 m/s 

90°N, 180°W 90°N, 110°W 

60°N, 180°W 60°N, 110°W 
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2. Correlations and Teleconnections 

We conducted correlation analyses to identify relationships between our 

predictand (October SIC in the Beaufort Sea, Figure 15) and a wide range of 

potential predictors, with the potential predictors leading by zero to five months.  

The potential predictors were globally distributed climate system variables (e.g., 

global SST, global 200 hPA GPH, global 850 hPa GPH; AOI, NAOI, MEI, SOI, 

PNAI).  These correlation analyses resulted in a series of maps showing the 

correlation between our predictand and the potential predictors.  Correlations that 

were strong and persistent correlations at all lead times were selected for further 

statistical and dynamical analyses.  Only some of these correlation results are 

shown in this report.  See Chapter II, Section C, for more information on our 

correlation methods and the interpretation of our correlation results. 

One of the focus variables for our correlation analyses was SST.  This is 

because: (a) climate variations in the ocean tend to be relatively persistent; (b) 

climate variations in the atmosphere are relatively sensitive to small changes in 

SST; (c) teleconnections can allow SST variations in one location to significantly 

impact atmospheric and oceanic conditions in very distant locations; and (d) SST 

data is readily available in near real time, which means SST is a feasible 

predictor for use in LRF systems (van den Dool 2007; Murphree 2008b).   

We correlated our predictand time series (Figure 15) with global SSTs for 

1979–2007, with SSTs leading by one to five months.  These correlations 

allowed us to assess how SST variations around the globe might contribute to 

variations in October SIC in the Beaufort Sea in October via teleconnection 

processes.  

Figure 22 shows the maps of the correlations between October SIC in the 

Beaufort Sea and global SSTs, with SST leading by one, three, and five months.  

At all lead times, there are significant negative correlations at all leads with SSTs 

in the Caribbean Sea region, with the strength of the correlation increasing with 

lead time.  There is also evidence of weaker but still significant negative 

correlations with SSTs in the vicinity of the Icelandic Low, primarily at the shorter 
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leads.  The correlations with tropical Pacific SST are relatively weak and non-

persistent, with spatial patterns that are only vaguely consistent with ENLN 

patterns.  There is also a significant negative correlation with tropical Indian SST 

at a five month lead.  The negative correlations mean that when SST increases 

(decreases), October SIC in the BS tends to decrease (increase) one to five 

months later.   

In the North Atlantic, Figure 22 shows evidence of a tripole pattern 

(especially at a five month lead), with negative correlations in the tropics and 

subpolar North Atlantic, and positive correlations in the midlatitude North Atlantic.  

This pattern is similar to the tripole (and quadripole) patterns in SST anomalies 

associated with the NAO and AO (Murphree 2008c), and suggests that the NAO 

and AO may play a role in establishing these correlations and teleconnections.  

The strengthening of correlations as lead time increases (e.g., for SST in 

the Caribbean Sea) is an especially interesting result, since it indicates the 

potential for enhanced predictability and skillful LRFs at longer leads.   
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Figure 22. Map of correlations between October SIC in the Beaufort Sea and 

global SSTs, with SST leading by: (a) one month; (b) three months; and (c) 
five months.  Negative (positive) correlations indicate that when October SIC 
is high, SST tends to be low (high).  Correlations with magnitudes ≥ 0.363 are 
significant at the 95% level (see Chapter II, Section C.2).  At all leads, there is 
a significant negative correlation with the SSTs in the Caribbean Sea (red 
box).  At shorter leads, there is a significant negative correlation with the 
SSTs south of Iceland (red oval). 

 

a 

b 

c 
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3. Predictor Selection 

 
Based on our correlation results, we identified SST in the Caribbean 

region as a potential predictor.  Similar types of correlation results (not shown) 

led us to identify several other potential predictors in the Beaufort Sea region, 

and in regions from the Beaufort Sea, including: (a) surface air temperature near 

Alaska and northwest (NW) Canada; (b) surface air temperature near Iceland; 

and (c) geopotential height (Z) at 850 hPa near Iceland. 

Table 5 lists the variables that we tested as potential predictors of October 

SIC in the Beaufort Sea at lead times of one to five months.  The potential 

predictors marked with BS were all area averaged quantities for the Beaufort Sea 

region shown in Figure 8. The other predictors were also area averaged 

quantities but for the other regions shown in the right column of Table 5.  These 

regions were: Alaska (AK), northwest Canada (NW), region of the Icelandic low 

region (IC), and the Caribbean Sea (CS).  The exact locations of these regions 

are stated in Table 5 and the approximate locations are shown in Figure 23.   
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Table 5. The variables tested as potential predictors of October SIC in the 
Beaufort Sea at lead times of one to five months.  The variables were 
averaged within the defined boxes shown in Figure 23 and then tested as 
possible predictors by means of a linear regression. BS indicates for 
Beaufort Sea.  SIC BS indicates SIC in the BS at a lead of one to five 
months prior to the October predictand period. 

Potential Predictors of 
October SIC 

Variable Location 

Z 850 hPa BS 80°-82.5°N, 142.5°-127.5°W 
u winds surface BS 70°-72.5°N, 148°-127.5°W 
v winds surface BS 70°-72.5°N, 148°-127.5°W 
ocean temperatures 5 m BS 70°-72.5°N, 148°-127.5°W 
u ocean currents 5-57 m BS 70°-72.5°N, 148°-127.5°W 
v ocean currents 5-57 m BS 70°-72.5°N, 148°-127.5°W 
SIC BS 70°-72.5°N, 148°-127.5°W 

BS: 70°-72.5°N, 148°-
127.5°W 
AK: 62.5°-67.5°N, 147.5°-
132.5°W 

T surface air Alaska/NW 
Canada/BS  

NW: 50°-52.5°N, 126°-
117.5°W 

SST Caribbean Sea (CS) 10°-22°N, 64°-76°W 
Z 850 hPa Icelandic Low (IC) 55°-57.5°N, 45°-30°W 
T surface air Icelandic Low 
(IC) 

55°-57.5°N, 45°-30°W 

Climate variation indices 
(AO, NAO, PNA, MEI, SOI, 
Nino 3.4) 

See main text. 
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Figure 23. Approximate locations of variables tested as predictors of October 
SIC.  Colors of the boxes correspond to colors of variables listed in the 
legend. 

The variables listed in Table 5 were tested via linear regression as 

potential predictors of SIC in October in the Beaufort Sea (our predictand) at lead 

times of one to five months.  For each lead time, we ranked the predictors by 

their R2.  Tables 6 through 10 display the results of these linear regressions at all 

lead times of five months to one month, respectively.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Z 850 hPa BS 
u winds surface BS 
v winds surface BS 
ocean temperatures 5m BS 
u ocean currents 5-57 m BS 
v ocean currents 5-57 m BS 
SIC 
air temperatures surface AK/NW/BS 
SST CS 
Z 850 hPa IC 
air temperatures surface IC 
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Table 6. R and R2 obtained when performing linear regressions between our 
predictand (SIC in October in the Beaufort Sea) and the May values of the 
listed variables (five month lead time).  The variables are ranked by their 
R2 values (highest R2 listed first).   

Variable  R  R2 
T surface air NW  ‐0.6159 0.379333 
SST CS  ‐0.533 0.284089 
SIC BS (May)  0.50233 0.252335 
ocean temperature 5 m BS  ‐0.4506 0.20304 
u winds surface BS  0.370798 0.137491 
Z 850 hPa BS  ‐0.3449 0.118956 
T surface air IC  ‐0.31938 0.102001 
NAO  0.279922 0.078356 
Nino 3.4  ‐0.23265 0.054126 
MEI  ‐0.20975 0.043995 
Z 850 hPa IC  ‐0.14728 0.02169 
AO  0.125407 0.015727 
v wind surface BS  0.115744 0.013397 
v ocean current 5‐57 m BS  0.08294 0.006879 
PNA  0.072001 0.005184 
u ocean current 5‐57 m BS  0.03584 0.001284 
SOI  0.003094 9.57E‐06 
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Table 7. R and R2 obtained when performing linear regressions between our 
predictand (SIC in October in the Beaufort Sea) and the June values of 
the listed variables (four month lead time).  The variables are ranked by 
their R2 values (highest R2 listed first).   

Variable  R  R2 
SIC BS (June)  0.642289 0.412536 
SST CS  ‐0.54686 0.299057 
T surface air IC   ‐0.46522 0.216431 
Z 850 hPa BS  ‐0.4647 0.215946 
ocean temperature 5 m BS  ‐0.46204 0.213484 
NAO  0.434258 0.18858 
u wind surface BS  0.42164 0.17778 
AO  0.312127 0.097423 
v wind surface BS  0.266371 0.070954 
Nino 3.4  ‐0.22073 0.048722 
Z 850 hPa IC  0.193182 0.037319 
T surface air BS  ‐0.15276 0.023337 
MEI  ‐0.1505 0.02265 
PNA  0.049223 0.002423 
SOI  ‐0.03249 0.001056 
v ocean current 5‐57 m BS  0.011978 0.000143 
u ocean current 5‐57 m BS  0.001093 1.19E‐06 
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Table 8. R and R2 obtained when performing linear regressions between our 
predictand (SIC in October in the Beaufort Sea) and the July values of the 
listed variables (four month lead time).  The variables are ranked by their 
R2 values (highest R2 listed first).   

Predictors  R  R2 
SIC BS (July)  0.72136 0.52036 
SST CS  ‐0.5649 0.319112 
Z 850 hPa BS  ‐0.4614 0.21289 
ocean temperature 5 m BS  ‐0.45699 0.208835 
T surface air IC  ‐0.44125 0.1947 
u wind surface BS  0.439249 0.19294 
T surface air BS  ‐0.37935 0.143909 
NAO  0.332359 0.110463 
AO  0.280684 0.078784 
PNA  ‐0.26557 0.070527 
Nino 3.4  ‐0.19753 0.039018 
v ocean current 5‐57 m BS  0.186886 0.034926 
MEI  ‐0.14404 0.020748 
v wind surface BS  0.096455 0.009304 
Z 850 hPa IC  ‐0.07954 0.006327 
u ocean current 5‐57 m BS  0.074672 0.005576 
SOI  0.056746 0.00322 

 
 
 
 
 
 
 
 
 
 
 
 
 



 57

 
 
 
 
 
 

Table 9. R and R2 obtained when performing linear regressions between our 
predictand (SIC in October in the Beaufort Sea) and the August values of 
the listed variables (two month lead time).  The variables are ranked by 
their R2 values (highest R2 listed first).   

Predictors  R  R2 
SIC BS (August)  0.75357 0.567868 
T surface air IC  ‐0.7145 0.51051 
SST CS  ‐0.5573 0.310583 
Z 850 hPa IC  ‐0.4985 0.248502 
T surface air BS  ‐0.48568 0.235882 
ocean temperature 5 m BS  ‐0.46406 0.215355 
Z 850 hPa BS  ‐0.35254 0.124287 
v wind surface BS  0.30617 0.09374 
AO  0.288654 0.083321 
NAO  0.252233 0.063621 
PNA  ‐0.24495 0.060001 
SOI  0.24244 0.058777 
u wind surface BS  0.192517 0.037063 
MEI  ‐0.16505 0.027242 
Nino 3.4  ‐0.16274 0.026484 
u ocean current 5‐57 m BS  0.036114 0.001304 
v ocean current 5‐57 m BS  0.034264 0.001174 
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Table 10. R and R2 obtained when performing linear regressions between our 
predictand (SIC in October in the Beaufort Sea) and the September values 
of the listed variables (one month lead time).  The variables are ranked by 
their R2 values (highest R2 listed first).   

Predictors  R  R2 
SIC BS (September)  0.7407 0.548636 
T surface air AK  ‐0.721 0.519841 
SST CS  ‐0.5097 0.259794 
u wind surface BS  0.483429 0.233704 
ocean temperature 5 m BS  0.468156 0.21917 
T surface air IC  ‐0.4471 0.199898 
Z 850 hPa BS  ‐0.3969 0.15753 
v ocean current 5‐57 m BS  0.288897 0.083461 
PNA  ‐0.28132 0.079141 
u ocean current 5‐57 m BS  0.233393 0.054472 
Z 850 hPa IC  0.144475 0.020873 
MEI  ‐0.13375 0.017889 
Nino 3.4  ‐0.13115 0.0172 
AO  ‐0.0949 0.009006 
SOI  0.079489 0.006319 
NAO  ‐0.02031 0.000412 
v wind surface BS  0.016231 0.000263 

 
The results from the linear regressions (Tables 6-10) show that there are 

predictand-predictor pairs with high R2 values at all lead times.  The predictors 

with the overall highest R2 values for all lead times are shown in Table 11.  This 

summary of the regression based rankings of the potential predictors indicates 

highlights two variables potentially important predictors over all leads: (a) SIC in 

the Beaufort Sea (SIC BS) one to five months prior to the predictand period 

(October); and (b) SST in the Caribbean Sea region (SST CS) one to five months 

prior to the predictand period (October).  Other variables have higher R2 values 

at some leads (e.g., T AK at a lead of one month).  But, Table 11 indicates that 

SIC BS and SST CS would be a useful predictor pair at all leads. 
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Table 11. Summary of the variables that showed a high R2 value for all linear 
regressions at all lead times.  The symbols for the variables are explained 
in the main text for Table 5. The numbers in the variable columns indicate 
the R2 rank for the indicated variable and lead time (see Tables 6-10).  
The parenthetical terms indicate the circulation variable with the high R2 
rank (Z, U. v) or T. 

 Predictor Variables with Overall Highest R2 Values 
Lead Time 
(months) 

SIC BS SST CS Circulation 
(Z, u, v) BS

T air sfc 
AK/NW/BS 

T ocean 
5m BS 

Circulation 
or T (Z, T 
sfc air) IC 

5 3 2 5 (u) 1 4 --- 
4 1 2 4 (Z) 3 5 --- 
3 1 2 3 (Z) --- 4 5 (T) 
2 1 3 7 (v) 5 6 2 (T) 

4 (Z) 
1 1 3 4 (u) 2 5 6 (T) 

 
Our goal was to develop hindcasts of October SIC at all lead times based 

on the optimal combination of predictors.  Based on the results in Table 11, we 

developed the four different predictor combination sets shown in Table 12.  

Predictor set 1 includes SIC BS and SST CS.  Predictor set 2 is the same as 

predictor set 1 but with 5 m ocean T added.  Predictor set 3 is the same as 

predictor set 2 but with Z 850 hPa BS added.  Predictor set 4 represents several 

special cases in which based on additions to or subtractions from the predictors 

used in sets 1-3.  We used predictor sets 1-4 to generate hindcasts for 1979-

2007 of our predictand (SIC in October in the Beaufort Sea).     

 
Table 12. Four predictor sets developed and tested via hindcasts for 1979–

2007 of October SIC in the Beaufort Sea. 

Predictor set 1 Predictor set 2 Predictor set 3 Predictor set 4 
• SIC BS 
• SST CS 

• SIC BS 
• SST CS 
• T 5 m BS 

• SIC BS 
• SST CS 
• T 5 m BS 
• Z 850 hPa BS 

• Special cases 
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B. HINDCAST AND VERIFICATION RESULTS 

Figures 24–32 and Tables 13–17 summarize our hindcast results when 

using the predictor sets shown in Table 12.  These figures show, for different 

lead times, time series of the hindcast results (blue curve) and the observed SIC 

(red curve), along with the LTM October SIC (bold black line).  For verification of 

the hindcasts, the SIC hindcasted and observed SIC values for each year were 

designated as above (below) average, if the SIC was above (below) the LTM SIC 

amount of 0.50.   

1. Predictor Set 1 

Figures 24 shows the observed and hindcasted SIC time series for 

October 1979–2007, with the hindcasts based on linear regression at a 5-month 

lead time and using predictor set 1 (SIC BS in May and SST CS in May).  Table 

13 shows the corresponding contingency table and verification results.  The 

figure shows a good overall visual agreement between the hindcasts and 

observed SIC, with some years being especially well hindcasted (e.g., most of 

the years during 1994–2004).  There are however some notable examples of 

over and under hindcasting (e.g., 1983, 1987, 1991, 1993, 2006, 2007).  Both the 

AN and BN POD values are larger than the AN and BN FAR values, and the 

HSS is greater than 0.3 which are all acceptable based on our set of hindcast 

performance criteria (see Chapter II, Section C.5.b).  The criteria set for an 

acceptable PC value was greater than 0.7, and the PC in this case was slightly 

below the acceptable limit.  The R2 value was 0.423018, the p-value for 

Caribbean SSTs was 0.003543, and the p-value for the Beaufort Sea SIC was 

0.006537.  Both p-values were acceptable and indicate statistical significance. 

The model over predicted the SIC in October 2006 at lead times of five, 

four, and three months.  This was due to the atypical relationship that SIC in 

October 2006 had with the SIC in previous months of 2006.  As shown in Tables 

6 through 11, SIC in previous months has a strong and consistent positive 

correlation with SIC in October at all lead times.  So, when higher than average 
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values of SIC in the Beaufort Sea is observed in earlier months, the regression 

model will predict above average SIC in October.  2006 was an atypical year in 

which SIC in the Beaufort Sea was higher than normal in May, June, and July 

(not shown), but was below normal in October.  Thus, the regression model 

based on the May, June, and July 2007 SIC predictors over-predicted the 

October SIC.  Apparently, one or more processes occurred in spring-Summer 

2006 that caused the sea ice in the Beaufort Sea to melt at a much faster rate 

than normal, resulting in below average SIC in October.  Further research is 

needed to identify and conclude what other mechanisms occurred to accelerate 

the melting that occurred in 2006. 

 

 

Figure 24. Time series of observed (red) and five-month lead hindcasted 
(blue) October SIC in the Beaufort Sea for 1979–2007. Hindcasts are based 
on linear regression using predictor set 1 values from the preceding May.  
See Table 12 for predictor set 1 variables.  The R2 value was 0.423018.  The 
p-value for Caribbean SSTs was 0.003543, and the p-value for the Beaufort 
Sea SIC was 0.006537.  The bold black line indicates the 1979–2007 LTM 
October SIC in our Beaufort Sea predictand region of 0.5047. 

 

blue line: October SIC hindcasts 
red line: observed October SIC 
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Table 13. Contingency table and verification results for five-month lead 
hindcasts of October SIC in the Beaufort Sea for 1979–2007.  Hindcasts 
are based on linear regression using predictor set 1 variables. See 
Chapter II, Section C, 5, for explanations of the contingency table and the 
verification metrics shown in this table.   

Verification of predictor set 1 five-
month lead hindcasts 

  OBSERVED 
  AN BN 

AN 7 4 

H
IN

D
C

A
ST

S 

BN 6 12 

MAE 0.15 
RMSE 0.19 

PC 0.66 
FAR (AN) 0.36 
FAR (BN) 0.33 
POD (AN) 0.54 
POD (BN) 0.75 

HSS 0.35 
 

Figure 25 shows the time series of the hindcasts of October 1979-2007 

SIC using predictor set 1 at a lead time of four months, along with the actual 

October 1979–2007 SIC values. Like the five month lead hindcasts (Figure 24), 

the four month lead hindcasts predict the SIC from 1994 to 2004 more accurately 

than other years.  The problems in predicting the 2006 SIC are also similar to 

those for the five month lead hndcasts, for the reasons previously stated.  Table 

14 shows the corresponding contingency table and verification results.  The R2 

value was 0.42811, the p-value for Caribbean SSTs was 0.108507, and the p-

value for the Beaufort Sea SIC was 0.007782.  The R2 value was greater than for 

the five month lead hindcasts (Figure 24) and the p-values remained acceptable.  

The AN and BN POD values were both greater than the AN and BN FAR values, 
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and the HSS value was greater than 0.3, making them all within the acceptable 

criteria.  The PC value was approximately 0.01 below the acceptable PC criteria 

that we set forth.  This difference was negligibly small, so we deemed this to be 

an acceptable PC value.   

 

 
Figure 25. Time series of observed (red) and four-month lead hindcasted 

(blue) October SIC in the Beaufort Sea for 1979–2007.  Hindcasts are based 
on linear regression using predictor set 1 values from the preceding June.  
See Table 12 for predictor set 1 variables.  The R2 value was 0.42811.  The 
p-value for Caribbean SSTs was 0.108507, and the p-value for the Beaufort 
Sea SIC was 0.007782.  The bold black line indicates the 1979-2007 LTM 
October SIC in our Beaufort Sea predictand region of 0.5047. 

 
 
 
 
 
 
 
 
 
 
 
 
 

blue line: October SIC hindcasts 
red line: observed October SIC 
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Table 14. Contingency table and verification results for four-month lead 
hindcasts of October SIC in the Beaufort Sea for 1979–2007.  Hindcasts 
are based on linear regression using predictor set 1 variables.   See 
Chapter II, Section C,5, for explanations of the contingency table and the 
verification metrics shown in this table.    

Verification of predictor set 1 four-
month lead hindcasts 

  OBSERVED 
  AN BN 

AN 8 4 

H
IN

D
C

A
ST

S 

BN 5 12 

MAE 0.15 
RMSE 0.20 

PC 0.69 
FAR (AN) 0.33 
FAR (BN) 0.29 
POD (AN) 0.62 
POD (BN) 0.75 

HSS 0.42 
 

 The three-month lead time hindcasts for October 1979-2007 SIC in the 

Beaufort Sea using predictor set 1 are shown in Figure 26, along with the actual 

October 1979-2007 SIC values.  The model was able to follow the general trends 

and variations in sea ice very well throughout the whole time period, with the 

exception once again of 2006.  Table 15 shows the corresponding contingency 

tables and verification results.  All the metrics met our criteria.  The R2 value was 

0.539094, the p-value for Caribbean SSTs was 0.088187, and the p-value for the 

Beaufort Sea SIC was 0.000576.  The R2 value was notably higher than for the 

five and four month lead hindcasts (Figures 24 and 25), and the p values for both 

predictors were acceptable. 
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Figure 26. Time series of observed (red) and three-month lead hindcasted 

(blue) October SIC in the Beaufort Sea for 1979–2007.  Hindcasts are based 
on linear regression using predictor set 1 values from the preceding July.  
See Table 12 for predictor set 1 variables.  The R2 value was 0.539094.  The 
p-value for Caribbean SSTs was 0.088187, and the p-value for the Beaufort 
Sea SIC was 0.000576.  The bold black line indicates the 1979–2007 LTM 
October SIC in our Beaufort Sea predictand region of 0.5047. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

blue line: October SIC hindcasts 
red line: observed October SIC 
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Table 15. Contingency table and verification results for three-month lead 
hindcasts of October SIC in the Beaufort Sea for 1979–2007.  Hindcasts 
are based on linear regression using predictor set 1 variables. See 
Chapter II, Section C, 5, for explanations of the contingency table and the 
verification metrics shown in this table.     

Verification of predictor set 1 three-
month lead time hindcasts 

  OBSERVED 
  AN BN 

AN 10 3 

H
IN

D
C

A
ST

S 

BN 3 13 

MAE 0.14 
RMSE 0.18 

PC 0.79 
FAR (AN) 0.23 
FAR (BN) 0.19 
POD (AN) 0.77 
POD (BN) 0.81 

HSS 0.60 
 

 The October 1979–2007 SIC hindcast results using predictor set 1 at a 

two month lead time are shown in Figure 27 along with the actual October SIC 

values.  Table 16 shows the corresponding contingency table and verification 

results.  The visual match between the hindcasted and observed values is similar 

to the match at longer leads.  However, there were some notable examples of 

unrealistic interannual variations in the two month hindcasts that were not 

present in the longer lead hindcasts (e.g., variations in the two month hndcasts 

that were too large in 1985 and 1991, and too small in 1998–2001).  The 2006 

hindcast errors are smaller than those at longer leads.  Figure 27 provides 

evidence that the overall performance for 1979–1995 was better at two month 

leads than at longer leads.  The R2 value was 0.578741, the p-value for 
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Caribbean SSTs was 0.110975, and the p-value for the Beaufort Sea SIC was 

8.63E-05.  All verification metrics were within the acceptable ranges.   

 

 
Figure 27. Time series of observed (red) and two-month lead hindcasted 

(blue) October SIC in the Beaufort Sea for 1979–2007.  Hindcasts are based 
on linear regression using predictor set 1 values from the preceding August.  
See Table 12 for predictor set 1 variables.  The R2 value was 0.578741.  The 
p-value for Caribbean SSTs was 0.110975, and the p-value for the Beaufort 
Sea SIC was 8.63E-05.  The bold black line indicates the 1979-2007 LTM 
October SIC in our Beaufort Sea predictand region of 0.5047. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

blue line: October SIC hindcasts 
red line: observed October SIC 
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Table 16. Contingency table and verification results for two-month lead 
hindcasts of October SIC in the Beaufort Sea for 1979–2007.  Hindcasts 
are based on linear regression using predictor set 1 variables.   See 
Chapter II, Section C, 5, for explanations of the contingency table and the 
verification metrics shown in this table.     

Verification of predictor set 1 two-
month lead time 

  OBSERVED 
  AN BN 

AN 9 1 

H
IN

D
C

A
ST

S 

BN 4 15 

MAE 0.14 
RMSE 0.17 

PC 0.83 
FAR (AN) 0.1 
FAR (BN) 0.21 
POD (AN) 0.69 
POD (BN) 0.94 

HSS 0.65 
 
 The results from the October 1979–2007 SIC hindcasts using predictor set 

1 at a one-month lead time are shown in Figure 28, along with the actual October 

SIC values.  The hindcasts show a notable overall improvement over those at 

longer leads, with the exception of the hindcasts for 2000–2002.  Table 17 shows 

the contingency table and verification results.  The R2 value was 0.604912, the p-

value for Caribbean SSTs was 0.021473, and the p-value for the Beaufort Sea 

SIC was 2.3E-05.  All verification metrics were within the acceptable criteria.  The 

model successfully predicted all instances of below normal (BN) SIC years which 

are reflected by the FAR (BN) value of 0 and a POD (BN) value of 1. 
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Figure 28. Time series of observed (red) and one-month lead hindcasted 
(blue) October SIC in the Beaufort Sea for 1979–2007.  Hindcasts are based 
on linear regression using predictor set 1 values from the preceding 
September.  See Table 12 for predictor set 1 variables.  The R2 value was 
0.604912.  The p-value for Caribbean SSTs was 0.021473, and the p-value 
for the Beaufort Sea SIC was 2.3E-05.  The bold black line indicates the 
1979–2007 LTM October SIC in our Beaufort Sea predictand region of 
0.5047. 

 
 
 
 
 
 
 
 
 
 
 

blue line: October SIC hindcasts 
red line: observed October SIC 
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Table 17. Contingency table and verification results for one-month lead 
hindcasts of October SIC in the Beaufort Sea for 1979–2007.  Hindcasts 
are based on linear regression using predictor set 1 variables. See 
Chapter II, Section C, 5, for explanations of the contingency table and the 
verification metrics shown in this table.      

Verification of predictor set 1 one-
month lead time 

  OBSERVED 
  AN BN 

AN 9 0 

H
IN

D
C

A
ST

S 

BN 4 16 

MAE 0.13 
RMSE 0.16 

PC 0.86 
FAR (AN) 0 
FAR (BN) 0.2 
POD (AN) 0.69 
POD (BN) 1 

HSS 0.71 
 

The predictor set 1 hindcasts at leads of five months to one month were 

able to predict the general trends and variations of observed SIC in the Beaufort 

Sea very well.  As the lead times got smaller, the R2 values increased and the 

predictor p-values remained small and acceptable.  This indicates that Caribbean 

SSTs and Beaufort Sea SIC in previous months are viable predictors of October 

SIC in the Beaufort Sea at all lead times. 

2. Predictor Set 2 

The predictor set 2 variables were Caribbean SSTs, SIC in the Beaufort 

Sea, and 5 m ocean temperatures in the Beaufort Sea (Table 12).  The predictor 

set 1 hindcasts showed that Caribbean SSTs and Beaufort Sea SIC were viable  
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predictors. The hindcasts generated using predictor set 2 allowed us to 

determine whether adding another predictor to the regression model would 

improve the model performance. 

Figure 29 shows the results of the two month lead hindcasts of October 

1979–2007 SIC using predictor set 2.  The R2 value was 0.56198, slightly smaller 

than when using predictor set 1 (Figure 27).  The p-values were acceptable 

(0.12738 for Caribbean SSTs and 0.0005 for Beaufort Sea SIC), except for the 5 

m ocean temperatures for which the p-value was 0.94243.  Therefore, we did not 

reject the null hypothesis that in the presence of the other predictors, 5 m ocean 

temperatures do not influence October SIC.  We looked at the relationship 

between August Beaufort Sea SIC and August Beaufort Sea 5 m ocean 

temperatures and found that there was a significant relationship between the two 

variables, with a correlation coefficient of -0.5651 (i.e., low (high) SIC tends to 

correspond to high (low) ocean T).  Ocean temperatures in the Beaufort Sea in 

previous months have a significant relationship with October SIC, which is 

evident in Table 11.  But ocean temperatures also have a significant correlation 

with concurrent SIC, indicating multi-colinearity.  So including both variables as 

predictors results in a high p-value for ocean temperature because of its strong 

relationship with the SIC predictor.   We concluded from this that while ocean 

temperature in previous months have a strong relationship with SIC in October, 

ocean temperature can be left out of the regression, as long as previous SIC is 

included.  These results indicate that SIC in previous months can be viewed as a 

proxy for ocean temperatures (i.e., from a physical perspective, low (high) SIC is 

associated with high (low) ocean T).  Similar results were observed for other lead 

times (not shown). 
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Figure 29. Time series of observed (red) and two-month lead hindcasted 

(blue) October SIC in the Beaufort Sea for 1979–2007.  Hindcasts are based 
on linear regression using predictor set 2 values from the preceding August.  
See Table 12 for predictor set 2 variables.  The R2 value was 0.56198.  The 
p-value for Caribbean SSTs was 0.12738, the p-value for the Beaufort Sea 
SIC was 0.0005, and the p-value for the 5 m ocean temperatures was 
0.94243.  The p-value for the 5 m ocean temperatures was too large to be 
acceptable.  The bold black line indicates the 1979–2007 LTM October SIC in 
our Beaufort Sea predictand region of 0.5047. 

3. Predictor Set 3 

Predictor set 3 contained Caribbean SSTs, SIC in the Beaufort Sea, 5m 

ocean temperatures in the Beaufort Sea, and Z at 850 hPa north of the Beaufort 

Sea (Table 12).  Figure 30 shows the time series of the hindcasted October 

1979-2007 SIC values using predictor set 3 and a two month lead time, along 

with the actual October 1979-2007 values in the Beaufort Sea.  The R2 value was 

0.55831, the p-value for Caribbean SSTs was 0.134851, the p-value for the 

Beaufort Sea SIC was 0.001346, the p-value for the 5m ocean temperatures was 

0.94243, and the p-value for the Beaufort Sea 850 hPa Z was 0.381132.  As we 

expected, the p-value for 5 m ocean temperatures was too large to be accepted, 

for the reasons described in the previous section.  The p-value for Z at 850 hPa 

blue line: October SIC hindcasts 
red line: observed October SIC
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was also too large to be accepted.  Therefore, we did not reject the null 

hypothesis that 850 hPa Z has no influence on October SIC.   

Table 11 shows that the low level geopotential heights over the Beaufort 

Sea had a significant and consistent relationship with October SIC at a leads of 

two and three months.  We analyzed the relationship between August SIC in the 

Beaufort Sea and August Z at 850 hPa in the Beaufort Sea and found a 

significant relationship between the two variables with a correlation coefficient of 

-0.323.  Similar results were found for the corresponding July correlations.  

Beaufort Sea Z at 850 hPa has a strong relationship with October SIC at leads of 

two to three months, but it also has a significant correlation with the concurrent 

Beaufort Sea SIC.  Thus, SIC can be viewed as a proxy for the Beaufort Sea Z at 

850 hPa.  Physically, this indicates that anomalously westerly (easterly) winds 

over the Beaufort Sea tend to be associated with high (low) SIC in the Beaufort 

Sea, consistent with the composite analysis results shown in Figures 17–18.  

Despite its strong relationship with October SIC, Z 850 hPa can be left out of the 

regression equations, as long as SIC is included as a predictor. 
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Figure 30. Time series of observed (red) and two-month lead hindcasted 
(blue) October SIC in the Beaufort Sea for 1979–2007.  Hindcasts are based 
on linear regression using predictor set 3 values from the preceding August.  
See Table 12 for predictor set 3 variables.  The R2 value was 0.55831.  The 
p-value for Caribbean SSTs was 0.134851, the p-value for the Beaufort Sea 
SIC was 0.001346, the p-value for the 5 m ocean temperatures was 0.94243, 
and the p–value for the Beaufort Sea 850 hPa Z was 0.381132.  The p-value 
for the 5 m ocean temperatures and Z 850 hPa were too large to be 
acceptable.  The bold black line indicates the 1979–2007 LTM October SIC in 
our Beaufort Sea predictand region of 0.5047. 

4. Predictor Set 4: Special Cases 

We investigated several special cases.  For brevity, we show only two in 

this report.  First, based on the results summarized in Table 11, we chose three 

predictors for two month lead hindcasts: (a) August SIC in the Beaufort Sea; (b) 

air temperature near the Icelandic Low; and (c) Z 850 hPa near the Icelandic 

Low.  The R2 value was 0.662973, the p-value for Beaufort Sea SIC was 

0.001201, the p-value for the surface air temperatures south of Iceland was 

0.095677, and the p-value for the Z 850 hPa in the Icelandic Low was 0.088051.  

Figure 31 shows the results of the hindcasts of October 1979-2007 SIC based on 

these three predictors as well as the actual October SIC.  The R2 value increased 

blue line: October SIC hindcasts 
red line: observed October SIC 
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from 0.578 using the predictor set 1 combination to 0.662973 with the use of this 

special predictor combination.  All three p-values were small and acceptable.  

The data indicates that the model was able to capture the general trend and 

variation of SIC well.  This indicates that at a two month lead, this special set of 

predictors will tend to outperform predictor sets 1, 2, and 3.  

 

Figure 31. Time series of observed (red) and two-month lead hindcasted 
(blue) October SIC in the Beaufort Sea for 1979–2007.  Hindcasts are based 
on linear regression using predictor set 4 values from the preceding August, 
which includes Z 850 hPa in the Icelandic Low, surface air temperatures 
south of Iceland, and SIC in the Beaufort Sea.  The R2 value was 0.662973.  
The p-value for Beaufort Sea SIC was 0.001201, the p-value for the surface 
air temperatures south of Iceland was 0.095677, and the p-value for the Z 
850 hPa in the Icelandic Low was 0.088051.  The bold black line indicates the 
1979–2007 LTM October SIC in our Beaufort Sea predictand region of 
0.5047. 

The second special case was the use of two predictors—September SIC 

and surface air temperatures over Alaska— to predict October SIC at a lead of 

one month.  These two predictors were chosen for this lead time based on the 

results summarized in Table 11.  Figure 32 shows the results of the hindcasts of 

October SIC in the Beaufort Sea using these predictors at a lead of one month, 

as well as the actual October SIC values.  The R2 value was 0.63893, the p-

blue line: October SIC hindcasts 
red line: observed October SIC 
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value for Beaufort Sea SIC was 0.00248, and the p-value for the surface air 

temperatures was 0.000591.  The data shows that these predictors were able to 

predict the October SIC for most of the years during 1979-2007 very well.  The 

notable exceptions were 1987, 1993, 2001, and 2007.  The R2 value jumped 

from approximately 0.60 from the Option 1 predictor combination to 

approximately 0.64.  Both p-values were small and acceptable.  This indicates 

that at a one month lead, this special set of predictors will tend to outperform 

predictor sets 1. 

 

Figure 32. Time series of observed (red) and one-month lead hindcasted 
(blue) October SIC in the Beaufort Sea for 1979–2007. Hindcasts are based 
on linear regression using predictor set 4 values from the preceding 
September, which includes SIC in the Beaufort Sea and surface air 
temperatures over Alaska.  The R2 value was 0.63893.  The p-value for 
Beaufort Sea SIC was 0.00248, and the p-value for the surface air 
temperatures was 0.000591.  The bold black line indicates the 1979–2007 
LTM October SIC in our Beaufort Sea predictand region of 0.5047. 

C. SUMMARY AND DISCUSSION OF RESULTS 

We used composite, correlation, and teleconnection analyses to identify 

several different sets of predictors to use in producing long range forecasts of 

SIC in the Beaufort Sea in October (Tables 11–12).  We tested these predictor 

blue line: October SIC hindcasts 
red line: observed October SIC 
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sets by generating hindcasts based on multivariate linear regression of October 

SIC in the Beaufort Sea during 1979–2007 at lead times of one to five months.  

We concluded that, overall, the optimal combination of predictors was antecedent 

SIC in the Beaufort Sea and SSTs in the Caribbean Sea.  Both variables showed 

a significant and consistent relationship between Beaufort Sea SIC in October at 

all tested lead times.  If Beaufort Sea SIC amounts are above (below) average in 

earlier months, then Beaufort Sea SIC tends be above (below) average in 

October too.  If Caribbean SSTs are below (above) average in earlier months, 

then Beaufort Sea SIC tends to be above (below) average in October.     

There were other variables that we tested along with Beaufort Sea SIC 

and Caribbean SSTs that showed a significant relationship with October SIC.  

Table 11 shows that 5 m ocean temperatures and low level atmospheric 

circulation in the Beaufort Sea had a noticeable relationship with October SIC at 

all lead times.  We found that while both of these variables show a strong 

relationship with October SIC, they also showed a significant relationship with 

Beaufort Sea SIC during simultaneous months.  For example, August Beaufort 

Sea SIC has a significant relationship with August 5 m ocean temperatures with 

a correlation coefficient of -0.565.  August Beaufort Sea SIC also had a 

correlation coefficient of -0.321 with August Z at 850 hPa.  Having these two 

variables as part of the predictor combination along with antecedent SIC resulted 

in p-values that indicated that they were not significant predictors in the presence 

of the antecedent SIC predictor.  We concluded that this occurred because of 

their strong relationship with SIC.  As long as SIC is included in the predictor 

combination, 5 m ocean temperatures and Beaufort Sea circulation can be left 

out as a predictor.  SIC could be viewed as proxy for both 5 m ocean 

temperature and Z at 850 hPa. 

We also tested special cases where predictors were removed and/or 

replaced with other predictors that showed a significant relationship at specific 

lead times.  We found that at a two month lead time, using August Beaufort Sea 

SIC, and both August surface air temperatures and Z at 850 hPa in the vicinity of 
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the Icelandic Low resulted in a higher R2 than when using the antecedent 

Beaufort Sea SIC and the Caribbean SST predictor set.  At a two month lead 

time, the Z in the Icelandic Low region showed a stronger relationship with 

October SIC than Caribbean SSTs, but this did not hold true at the other lead 

times.  We also found that at a one month lead time, the use of September SIC 

and air temperatures in the Alaska region resulted in a higher R2 value than 

when using the September SIC and the Caribbean SST predictor set.  At a one 

month lead time, Alaska surface air temperature showed a stronger relationship 

with October SIC than did Caribbean SSTs, but this did not hold true at the other 

lead times.   

For operational purposes, the antecedent Beaufort Sea SIC and 

Caribbean SST predictors may be the most viable predictor set, since it would 

allow forecasters to use just one basic forecast model for all forecasts at leads of 

five months to one month.  

 Our correlation results led us to identify Caribbean SST as a potential 

predictor, and our hindcast results indicate that it is a useful predictor.  However, 

it is important to determine whether it is also a dynamically plausible predictor.  

The SIC-SST correlation results in Figure 22 show a North Atlantic pattern similar 

to the SST anomaly patterns associated with the AO and NAO (Murphree 

2008c).  This suggests that Caribbean SST may be a proxy for dynamical 

processes by which the AO and/or NAO affect Beaufort Sea SIC.  To test this 

hypothesis, we investigated the correlations between SST, the AOI, the NAOI, 

and SIC in the Beaufort Sea. 

Figure 33 shows a map of the correlation between the AO index in 

August-November and north Atlantic SSTs in the following March–June.  Note 

the pronounced quadripole pattern in Figure 33 (negative in tropics-subtropics 

and subpolar regions, positive in midlatitudes and polar regions) and its 

resemblance to the north Atlantic patterns, especially the Caribbean patterns, in 

the maps of the correlations between October SIC and global SSTs (Figure 22).  

The correlations in Figure 33 indicate that the AO in the late summer and fall 
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tends to alter the ocean in ways that persist into the following spring.  Correlation 

maps like those in Figure 33, but for correlations with the NAO index (not shown), 

yield similar patterns, as expected given the close correlation between the AO 

and NAO (Murphree 2008c). 

 

 
Figure 33. Map of correlations between the AO index in August-November and 

north Atlantic SSTs in the following March-June.  Negative (positive) 
correlations indicate that when AO index is high, SST tends to be low (high).  
Correlations with magnitudes ≥ 0.363 are significant at the 95% level (see 
Chapter II, Section C. 2).  Note the quadripole pattern with negative 
correlations in the tropics and subtropics, positive correlations in much of the 
midlatitudes, negative correlations in the subpolar region, and positive 
correlations in the polar region.  These correlations indicate that the impacts 
of late summer and fall AO conditions on north Atlantic SSTs tend to persist 
into the following spring and summer.  Note the strong resemblance between 
the correlation patterns shown in Figure 22 and Figure 33. 

Figure 34 shows time series of the correlation coefficients between 

Beaufort Sea SIC in the current year October and the AO and NAO indices in the 

preceding 15 months of the current year and past year.  The strongest 

correlations are in August-November of the past year and May–August of the 

current year.  Tables 6-10 also show correlations between Beaufort Sea SIC in 

October and the AO and NAO indices in the preceding five to one months.  At 
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these leads, the correlations with SIC are weak compared to those of other 

potential SC predictors and are statistically insignificant at several leads.  In 

particular, the correlations with the AO and NAO indices are weak compared to 

those with Caribbean SST (Tables 6-10).  However, as indicated by Figures 33–

34, the strong Caribbean SST correlations are very likely to be due, at least in 

part, to the impacts of the AO and/or NAO in the Caribbean during the preceding 

August-November.  If so, then the Caribbean SST predictor may be viewed as a 

proxy for the delayed effects of the AO and/or NAO in August-November of the 

past year on Beaufort Sea SIC in October of the current year.  These results also 

indicate that the AO and NAO indices should be considered for use as predictors 

of Beaufort Sea SIC at leads of 11–15 months (see Chapter IV, Section C). 

 
Figure 34. Time series of the correlation coefficients between Beaufort Sea 

SIC in the current year October and the AO and NAO indices in the preceding 
15 months of the current year and past year.   A peak exists in the correlation 
between the AO and NAO indices in the past year August-November and the 
October SIC in the current year.  These correlations, plus those shown in 
Figure 33, indicate that north Atlantic SSTs in the current year may represent 
the impacts of the past year AO and NAO conditions on current year SIC 
conditions in the Beaufort Sea.  Thus, north Atlantic SSTs may be useful 
predictors of the long term impacts of the AO and NAO on Arctic sea ice (e.g., 
Caribbean Sea SSTs may be useful predictors of Beaufort Sea sea ice). 
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D. LONG RANGE FORECAST RESULTS  

 We conducted an additional test of our forecast methods by issuing a 

forecast on 01 June 2010 of SIC in the Beaufort Sea in October 2010.  To 

develop this forecast at a five month lead time, we obtained and applied the May 

2010 monthly average Caribbean SSTs and the May 2010 monthly average 

Beaufort Sea SIC.  We developed a linear regression model based on using May 

1979–2007 Caribbean SSTs and Beaufort Sea SIC as the predictors and 

October 1979-2007 SIC as the predictand.  The regression equation was: 

 Y = 8.3625+1.708x1 – 0.341x2 (7) 

Y is the forecasted October 2010 SIC amount, x1 is the May 2010 monthly 

average SIC in the Beaufort Sea, and x2 is the May 2010 monthly average 

Caribbean SST.  The May 2010 Beaufort Sea SIC was 0.944, slightly above the 

May LTM SIC of 0.92102.  The May 2010 Caribbean SST was 28.2°C, noticeably 

higher than the May LTM Caribbean SST of approximately 27.7°C.  We used 

these May 2010 predictors values and equation 7 to produce a forecast of 

Beaufort Sea SIC in October 2010 of 0.33748.  The LTM Beaufort SIC in October 

is 0.5047.  Therefore, our forecasted SIC in October 2010 is 37% below the 

average SIC for October.  Figure 35 shows time series of May Beaufort Sea SIC, 

May Caribbean SSTs, and October SIC.  Also shown are the May 2010 values of 

Beaufort Sea SIC and Caribbean SSTs, and our forecasted SIC for October 

2010.  We will verify our forecast in November 2010. 
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Figure 35. Time series of October SIC in Beaufort Sea for 1979–2007: 

observed (blue line) and forecasted at a five-month lead time for October 
2010 (single blue diamond on right side of figure). Forecast issued 01 June 
2010.  Also shown are time series of the predictors in the linear regression 
model used to produce the SIC hindcasts and forecast: red line = May SIC in 
the Beaufort Sea; green line = May SST in the Caribbean Sea.  The May 
2010 observed values of the predictors are shown by the green triangle (SST) 
and red square (SIC) on the right side of the figure.  
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IV. CONCLUSIONS 

A. KEY RESULTS  

 This study investigated the viability of using advanced climate data sets 

and methods to generate skillful probabilistic forecasts at long lead times of 

Arctic SIC.  Our focus was on SIC in the Beaufort Sea in October.  One of our 

primary goals was to contribute to the improvement of operational long-range 

support products for Navy decision makers planning Arctic. 

The methods we used in this study (overviewed in Chapter II) apply 

existing and easily available state of the science atmospheric, oceanic, and ice 

data sets.  These data sets were used to carry out analyses of the climate 

variations in Arctic sea ice and the overlying atmosphere and ocean.  Evaluating 

the data allowed us to recognize interannual variations and trends in sea ice and 

the corresponding atmospheric and oceanic patterns associated with sea ice.  

We selected the Beaufort Sea as the region to predict SIC based on its high SIC 

variation, its location within the Northwest Passage, and its overall importance to 

the U.S. and its allies.  We selected October as our target forecast time period 

based on the potential problems that increasing sea ice poses during this month.  

We correlated October SIC in the Beaufort Sea with several different 

atmospheric and oceanic variables and looked at composite anomalies of these 

variables for years when SIC was high and low in the Beaufort Sea.  From this, 

we found that Beaufort Sea SIC and Caribbean SSTs at lead times of one to five 

months were a predictor combination that was consistently and significantly 

correlated with October SIC in the Beaufort Sea.  We generated hindcasts of 

1979–2007 October SIC by means of a multivariate linear regression model 

based on these two predictors.  We measured the skill of the hindcasts by using 

scalar and tercile metrics (outlined in Chapter II) and concluded that Beaufort 

Sea SIC and Caribbean SSTs during previous months are viable predictors of  
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October SIC in the Beaufort Sea.  Based on observed Beaufort Sea SIC and 

Caribbean SSTs in May 2010, we developed and issued in June 2010 a long 

lead climate forecast of Beaufort Sea SIC.  

In additional testing, we found that 5 m ocean temperatures and low level 

atmospheric circulation over the Beaufort Sea during previous months show a 

signification relationship with Beaufort Sea SIC in October, but that both 

variables may be left out of the regression as long as the corresponding month’s 

Beaufort SIC amount is included in the regression.  This is because of the strong 

relationship that both 5 m ocean temperatures and the atmospheric circulation 

have with the concurrent Beaufort SIC.  Therefore, Beaufort Sea SIC can be 

viewed as a proxy for both variables.  As long as Beaufort Sea SIC is included in 

the regression, the other two variables can be left out. 

We also found that at a two month lead time, Caribbean SSTs can be 

replaced with surface air temperatures and low level atmospheric circulation (Z at 

850 hPa) near the Icelandic Low circulation, with a higher R2 being obtained than 

when using Caribbean SSTs.  At a one month lead time, Caribbean SSTs can be 

replaced with average surface air temperatures in the Alaska/Beaufort Sea 

region to obtain a higher R2 value.  This could indicate that the August Icelandic 

Low conditions and September Beaufort Sea conditions have a stronger 

relationship with October SIC than Caribbean SSTs.  While these are intriguing 

findings, using Caribbean SSTs might still be preferred at these lead times for 

consistency in forecasting operations, the values forecasted at different leads, 

and the use of the forecasts by decision makers. 

 There is evidence that the AO and/or NAO from the previous summer-fall 

can influence in the following spring the upper ocean in the north Atlantic 

including the Caribbean Sea.  Alterations in the Caribbean SSTs can lead to 

altered climate patterns resulting in variations in SIC in the Beaufort Sea in 

October.  The dynamical and physical processes that occur in this changed 

climate system and their connection to Beaufort Sea SIC need to be researched 

further. 
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Our results indicate that viable long-range forecasts of October SIC in the 

Beaufort Sea are possible via the use of Beaufort Sea SIC and Caribbean SSTs 

at lead times of one to five months.  While our results show a definite correlation 

between these two variables and October SIC in the Beaufort Sea, we suspect 

that there are additional factors and dynamics that play an important role in the 

variability of SIC in the Beaufort Sea.  Our study is meant to emphasize how 

advanced data sets and methods can be used to generate skillful long-range 

forecasts of sea ice amounts in the Arctic for use in operational planning by the 

U.S. Navy. 

B.  APPLICABILITY TO DOD OPERATIONS 

 The U.S. Navy Arctic Roadmap (outlined in Chapter I) gives an overview 

of the Navy’s goals concerning present and future operations in the Arctic.  The 

Roadmap outlines several focus areas, but climate assessment and prediction 

focus area is the basis for success in the other focus areas.  The impacts from 

improving climate assessment and prediction that are outlined in the Roadmap 

include having a better understanding of when significant access for Arctic 

navigation is likely to develop, having a better understanding of changes that 

have occurred in the Arctic environment and what climate changes could occur in 

the future, and providing Navy decision makers with a better understanding of the 

Arctic environment on temporal and spatial scales that support naval tactical, 

operational, and strategic planning.    

 Arctic climate change has been a heavily research area for the past 10-20 

years.  Many prior studies have investigated Arctic sea ice variation, although 

relatively few have investigated long range forecasting of sea ice.  There are 

several organizations (DoD and non-DoD) that offer Arctic seasonal outlooks and 

short range sea ice forecasts.  A 30-day sea ice forecast is generated by the NIC 

and CIS in the form of a text document.  The Navy is currently able to develop a 

LTM analysis of SIC tailored to a customer’s time period and area of interest.  

The LTM does not account for the interannual variation in sea ice that occurs.  

This study has contributed to the development of long-range products by the 
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application of advanced data sets and methods to develop and test new methods 

for providing Navy decision makers with specific sea ice information tailored to 

their area and time period of interest.  The study, along with Mundhenk (2009), 

Heidt (2009), Ramsaur (2009), Raynak (2009), Turek (2008), Moss (2007), and 

Twigg (2007), highlight the importance of using advanced climate data sets and 

methods to improve our understanding of climate system dynamics, the impacts 

of climate variations and climate change on DoD operations, and methods for 

operationally predicting those impacts at long lead times (weeks, months, years, 

decades, and longer).   

C. TOPICS FOR FURTHER RESEARCH 

 This and prior studies have demonstrated that the application of advanced 

climate data sets and methods can improve long lead climate support for 

operational planning in the Arctic and other regions.  But additional research is 

needed to continue this development.  Are recommendations for further research 

are listed below. 

1.  This study used a SIC data set that ended in December 2007.  To 

improve the analysis of SIC and its potential predictors, we recommend obtaining 

SIC data that extends to the present.  This may be available from NSIDC.  Sea 

ice data sets from the Hadley Centre should also be investigated.   

 2. This study used SIC as the only variable to provide information about 

sea ice variation within the Arctic.  There are other sea ice data sets available 

that could provide a better understanding of sea ice variation (e.g., data on ice 

thickness and volume, multi-year sea ice, and first year sea ice from NSIDC and 

other organizations).   

 3.  This study focused on analyzing October SIC in the Beaufort Sea at 

leads of one to five months.  Studies of other predictand regions and periods, 

and other lead times, are needed to increase our understanding of the potential 

for forecasting sea ice conditions at long lead times. 

4.  We found evidence of long term warming trends in the upper ocean of 

the Arctic when analyzing oceanic reanalysis data.  This topic should be 
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investigated further to help assess and forecast the impacts of upper ocean 

temperature and temperature advection on Arctic sea ice, ocean acoustic 

parameters, and other variables. 

5.  The use of alternate base periods in climate anomaly analyses should 

be investigated to better account for long term trends. 

6.  Our study indicated some potential for skillful forecast at leads of a 

year or more, using as predictors, for example, the AO and NAO indices.  Future 

studies should investigate this potential further. 

7.  Additional long range forecast methods should be investigated, such as 

optimal climate normal methods for forecasting variables that are undergoing 

large low frequency variations (e.g., sea ice in regions experiencing long term 

declines).  

8.  Future studies should investigate additional verification methods (e.g., 

tercile categorical verification). 

9.  Investigations are needed on the long range forecasting needs of U.S. 

Navy planners and other decision makers (e.g., information on environmental 

variables for which forecasts are needed [including quantities other than SIC], 

operational sea ice thresholds, planning cycles).  In order to best meet these 

customers’ needs, more information is needed about the type of analyses and 

forecasts, and accompanying information (e.g., uncertainty assessments) that 

are needed for specific operations.   
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